Projeto Pedagógico do Curso Superior de

Engenharia Sanitária e Ambiental

na modalidade presencial

www.ifrn.edu.br
Projeto Pedagógico do Curso Superior de
Engenharia Sanitária e Ambiental
na modalidade presencial

Área: Engenharias I

Projeto aprovado pela Deliberação Nº 16/2019-CONSEPEX/IFRN, de 08/11/2019 e
Curso Superior de Engenharia Sanitária e Ambiental na modalidade presencial IFRN

Wyllys Abel Farkatt Tabosa
REITOR

Marcos Antônio de Oliveira
VICE – REITOR

Ticiana Patrícia da Silveira Cunha Coutinho
PRÓ-REITOR DE ENSINO

Régia Lúcia Lopes
PRÓ-REITORA DE EXTENSÃO

Márcio Adriano de Azevedo
PRÓ-REITOR DE PESQUISA E INOVAÇÃO

COMISSÃO DE ELABORAÇÃO/SISTEMATIZAÇÃO
Jean Leite Tavares
Adriano Israel Bezerra Lopes
Ceres Virginia da Costa Dantas
Aristides Felipe Santiago Junior
Edmilson Pereira dos Santos
Handson Cláudio Dias Pimenta
Leonardo Pivotto Nicodemo

COORDENAÇÃO PEDAGÓGICA DIACON
Edmilson Pereira dos Santos

REVISÃO TÉCNICO-PEDAGÓGICA
Aamilde Martins da Fonseca
Keila Cruz Moreira
Maria Raimunda Matos Prado
Rejane Bezerra Barros

COLABORAÇÃO

Alexandre Magno Rocha da Rocha
Alexandre Lúcio Dantas
Ana Karla Costa de Oliveira
Andre Luiz Calado Araujo
André Luiz Lopes Toledo
Arthur Victor Medeiros Francelino
Elthon John Rodrigues de Medeiros
Énio Fernandes Amorim
Erika Araujo da Cunha Pegado
Fabiola Gomes de Carvalho
Francimara Costa de Souza Tavares
Francisco Gildasio de Figueiredo

Gabriel Constantino de Lima
Gerda Lucia Pinheiro Camelo
José Beldson Elias Ramos
Lucia de Fátima Lucio Gomes da Costa
Luiz Eduardo Lima de Melo
Marco Antônio Calazans Duarte
Miguel Cabral de Macedo Neto
Otto Augusto de Morais Costa
Régia Lúcia Lopes
Roberto Pereira
Sinara Cybelle Turibio e Silva Nicodemo
Thiago Vieira Fonseca
SUMÁRIO

APRESENTAÇÃO .. 6

1. IDENTIFICAÇÃO DO CURSO ... 7

2. JUSTIFICATIVA ... 8

3. OBJETIVOS .. 13

4. REQUISITOS E FORMAS DE ACESSO .. 14

5. PERFIL PROFISSIONAL DE CONCLUSÃO DO CURSO .. 16

6. ORGANIZAÇÃO CURRICULAR DO CURSO .. 21

 6.1 Estrutura curricular ... 22

 6.2 Seminários curriculares ... 38

 6.3 Unidade curricular de extensão (UCE) ... 38

 6.4 PRÁTICA PROFISSIONAL ... 40

 6.4.1 Núcleo de extensão e prática profissional/NEPP ... 41

 6.4.2 Estágio curricular supervisionado .. 42

 6.4.3 Atividades Complementares ... 43

 6.5 PROJETO FINAL DE CURSO ... 44

 6.6 DIRETRIZES CURRICULARES E PROCEDIMENTOS PEDAGÓGICOS 45

 6.6.1 Inclusão e diversidade .. 46

 6.6.2 Núcleo de Atendimento às Pessoas com Necessidades Específicas/NAPNE 46

 6.6.3 Núcleo de Estudos Afro-Brasileiros e Indígenas/NEABI 47

 6.7 INDICADORES METODOLÓGICOS ... 47

7. PROCEDIMENTOS DE AVALIAÇÃO DO ENSINO E APRENDIZAGEM 49

8. CRITÉRIOS DE AVALIAÇÃO DO PROJETO PEDAGÓGICO DO CURSO 52

9. APROVEITAMENTO DE ESTUDOS E CERTIFICAÇÃO DE CONHECIMENTOS 53

10. INSTALAÇÕES E EQUIPAMENTOS .. 53

 10.1 Ambientes de uso geral ... 54

 10.2 Ambientes de uso específico .. 55

 10.3 LABORATÓRIOS ... 55

 10.3.1 Laboratórios de Informática ... 56
10.3.2 Laboratórios de Geoprocessamento .. 56
10.3.3 Laboratórios de Análises Físicas e Químicas ... 56
10.3.4 Laboratório de Microbiologia Sanitária e Ambiental 56
10.3.5 Laboratório de Pesquisa Ambiental ... 57
10.3.6 Laboratório de Análise de Solos ... 57
10.3.7 Laboratório de Ecotoxicologia ... 57
10.3.8 Laboratório de Instalações Hidrossanitárias e Hidráulica Geral 57
10.3.9 Laboratório de Instalações Elétricas ... 58
11. BIBLIOTECA ... 58
12. PERFIL DO PESSOAL DOCENTE E TÉCNICO-ADMINISTRATIVO 59
13. CERTIFICADOS E DIPLOMAS .. 60
14. REFERÊNCIAS .. 60
ANEXO I – DESCRIÇÃO DAS INSTALAÇÕES E EQUIPAMENTOS 63
ANEXO II – EMENTAS E PROGRAMAS DAS DISCIPLINAS OBRIGATÓRIAS 69
ANEXO III – EMENTAS E PROGRAMAS DAS DISCIPLINAS OPTATIVAS 170
ANEXO IV – SEMINÁRIOS CURRICULARES .. 202
ANEXO V – ACERVO BIBLIOGRÁFICO ... 204
APRESENTAÇÃO

O presente documento constitui-se do projeto pedagógico do curso Engenharia Sanitária e Ambiental, presencial, referente à área de Engenharias I da tabela de áreas de conhecimento da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Este projeto pedagógico de curso se propõe a definir as diretrizes pedagógicas para a organização e o funcionamento do respectivo curso de engenharia do Instituto Federal do Rio Grande do Norte (IFRN). Este curso é destinado aos portadores de certificado de conclusão do ensino médio e pleiteiam uma formação de graduação em engenharia.

Consustenta-se em uma proposta curricular baseada nos fundamentos filosóficos da prática educativa numa perspectiva progressista e transformadora na perspectiva histórico-critica (FREIRE, 1996), nos princípios norteadores da educação superior brasileira, explicitados na LDB nº 9.394/96, bem como, nas resoluções e decretos que normatizam os cursos de engenharia do sistema educacional brasileiro e demais referenciais curriculares pertinentes a essa oferta educacional.

Estão presentes, também, como marco orientador dessa proposta, as diretrizes institucionais explicitadas no Projeto Político-Pedagógico, traduzidas nos objetivos desta Instituição e na compreensão da educação como uma prática social transformadora, as quais se materializam na função social do IFRN que se compromete a promover formação humana integral por meio de uma proposta de educação profissional e tecnológica que articule ciência, trabalho, tecnologia e cultura, visando à formação do profissional-cidadão crítico-reflexivo, competente técnica e eticamente comprometido com as transformações da realidade na perspectiva da igualdade e da justiça social.

Os cursos de nível superior do IFRN, com destaque aos de engenharia, têm, como perfil do formando egresso, o profissional engenheiro com formação generalista, humanista, crítica e reflexiva. Delineia-se, assim, o perfil de um profissional capacitado a compreender e a produzir as novas tecnologias, estimulando a atuação crítica e criativa na identificação e na resolução de problemas, bem como considerando os aspectos políticos, econômicos, sociais, ambientais e culturais com visão ética e humanística, em atendimento às demandas da sociedade (BRASIL, CNE/CES, 2002).

Esses cursos de engenharia atuam com os conhecimentos gerais e específicos, o desenvolvimento de pesquisas científico-tecnológicas e as devidas aplicações no mundo do trabalho. As formações são definidas como especificidades dentro de uma determinada área profissional, visando o desenvolvimento, a aplicação, a socialização de novas tecnologias, a gestão de processos e a produção de bens e serviços. A organização curricular busca
possibilitar a compreensão crítica e a avaliação dos impactos sociais, econômicos e ambientais resultantes da interferência do homem na natureza, em virtude dos processos de produção e de acumulação de bens.

A forma de atuar na educação profissional tecnológica possibilita resgatar o princípio da formação humana em sua totalidade, superar a visão dicotômica entre o pensar e o fazer a partir do princípio da polticia, assim como visa propiciar uma formação humana e integral em que a formação profissionalizante não tenha uma finalidade em si, nem seja orientada somente pelos interesses do mercado de trabalho, mas se constitui em uma possibilidade para a construção dos projetos de vida dos estudantes (FRIGOTTO; CIAVATA; RAMOS, 2005).

Este documento apresenta os pressupostos teóricos, metodológicos e didático-pedagógicos estruturantes da proposta do curso em consonância com o Projeto Político-Pedagógico Institucional (PPP/PPI) e com o Plano de Desenvolvimento Institucional (PDI). Em todos os elementos estarão explicitados princípios, categorias e conceitos que materializarão o processo de ensino e de aprendizagem destinados a todos os envolvidos nesta práxi pedagógica.

1. IDENTIFICAÇÃO DO CURSO

Este documento propõe-se a definir, organizar estruturalmente e normatizar o funcionamento do curso de Engenharia Sanitária e Ambiental na instituição. O curso é destinado aos portadores de certificado de conclusão do ensino médio e está planejado com o compromisso de formar o profissional engenheiro para atuar, em conformidade com as resoluções 310/1986 (referente às atribuições de engenheiro sanitário) e 447/2000 (referente às atribuições do engenheiro ambiental) do CONFEA, no âmbito das atividades de engenharia Sanitária e Ambiental.
Em consonância com a função social do IFRN e com os fundamentos filosóficos da prática educativa progressista e transformadora na perspectiva histórico-crítica (FREIRE, 1996), o curso se compromete a promover formação profissional comprometida com os valores fundamentais da sociedade democrática, com os conhecimentos referentes à compreensão da educação como uma prática social, com o domínio dos conhecimentos específicos, os significados desses em diferentes contextos e a necessária articulação interdisciplinar.

O currículo do curso de Engenharia Sanitária e Ambiental deve ser integralizado no prazo mínimo de 10 semestres. O número mínimo, médio e máximo de créditos a serem cursados semestralmente é 14, 25 e 31, respectivamente. O número de horas-aula do curso de Engenharia Sanitária e Ambiental será de 4.300 horas, distribuídas em 3270 horas de disciplinas obrigatórias, 270 horas de disciplinas optativas, 40 horas de atividades complementares, 10 horas de seminários curriculares e 430 horas de práticas de extensão, 120 horas para projeto de final de curso e 160 horas de estágio supervisionado.

2. JUSTIFICATIVA

Com o avanço dos conhecimentos científicos e tecnológicos, a nova ordem no padrão de relacionamento econômico entre as nações, o deslocamento da produção para outros mercados, a diversidade e multiplicação de produtos e de serviços, a tendência à conglomeração das empresas, à crescente quebra de barreiras comerciais entre as nações e à formação de blocos econômicos regionais, a busca de eficiência e de competitividade industrial, através do uso intensivo de tecnologias de informação e de novas formas de gestão do trabalho, todos esses aspectos associados às exigências legais e sociais em busca do denominado desenvolvimento sustentável, pautado nos aspectos econômicos, sociais e ambiental, evidenciam a velocidade das transformações estruturais por que passa a sociedade nas últimas décadas. Isso implica em novas exigências às instituições responsáveis pela formação profissional dos cidadãos.

Nesse cenário, amplia-se a necessidade e a possibilidade de formar os jovens capazes de lidar com o avanço da ciência e da tecnologia, prepará-los para se situar no mundo contemporâneo e dele participar de forma proativa na sociedade e no mundo do trabalho, com destaque à proteção do meio ambiente e a busca pelo desenvolvimento sustentável.

A partir da década de noventa, com a publicação da atual Lei de Diretrizes e Bases da Educação (Lei nº 9.394/96), a educação profissional passou por diversas mudanças nos seus direcionamentos filosóficos e pedagógicos, passa a ter um espaço delimitado na própria lei, configurando-se em uma modalidade da educação nacional. Mais recentemente, em 2008, as
instituições federais de educação profissional, foram reestruturadas para se configurarem em uma rede nacional de instituições públicas de EPT, denominando-se de Institutos Federais de Educação, Ciência e Tecnologia. Portanto, foram pauta da agenda de governo como uma política pública dentro de um amplo projeto de expansão e interiorização dessas instituições educativas.

A implantação do curso de Engenharia Sanitária e Ambiental vem auxiliar no preenchimento desta lacuna existente na região metropolitana de Natal, no estado do Rio Grande do Norte e região nordeste do Brasil. Demandas geradas por esse contexto social e político, aos princípios da lei de Diretrizes e Bases da Educação Nacional, ao Plano de Desenvolvimento da Educação, à função social e às finalidades do IFRN, assim como às diretrizes curriculares nacionais e às Diretrizes Curriculares Nacionais dos Cursos de Engenharia. Para se definirem as ofertas, são consideradas as demandas evidenciadas a partir de estudos e pesquisas sobre os arranjos produtivos, culturais e sociais locais, regionais e nacionais.

Nesse sentido, o IFRN ampliou sua atuação em diferentes municípios do estado do Rio Grande do Norte, com a oferta de cursos em diferentes áreas profissionais, conforme as necessidades da indústria nacional e das demandas locais.

<table>
<thead>
<tr>
<th>Setores</th>
<th>Sub-setores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construção Civil</td>
<td>Infra-estrutura territorial, Topografia e Georreferenciamento no âmbito da Construção Civil associada à temática de saneamento e meio ambiente, incluindo Sistemas Hidráulico-Sanitários.</td>
</tr>
<tr>
<td>Estruturas</td>
<td>Estruturas de Concreto, Metálicas, de Madeira e de outros materiais. Estruturas Especiais.</td>
</tr>
</tbody>
</table>
No âmbito do estado de Rio Grande do Norte, a oferta do Curso de Engenharia Sanitária e Ambiental, na modalidade presencial, justifica-se uma vez que suas principais atividades econômicas se concentram principalmente no turismo, na pesca, na agropecuária, na indústria, na mineração e na extração de petróleo, atividades essas fortemente associadas a necessidade de preservação e proteção ambiental. O turismo se constitui numa das principais atividades econômicas do Estado e embora seja denominado de indústria sem chaminé, necessita de ações de gestão de infraestrutura básica tais como as de saneamento ambiental, que dê sustentabilidade para essa atividade. A expansão atual dos sistemas de abastecimento de água, coleta e tratamento de esgotos, novos projetos de drenagem em implantação, demandas locais e regionais para implantação das políticas nacionais de saneamento e resíduos sólidos implicam na necessidade de profissionais para a concepção de novos projetos, dentro de tecnologias inovadoras e atuais, além dos aspectos de operação e manutenção dos sistemas em implantação, alguns com tecnologias de ponta, como é o caso das novas estações de tratamento de esgotos que serão implantadas nos próximos anos na região metropolitana do Natal. O aspecto mais amplo da gestão organizacional com maior ênfase nos aspectos ambientais também demanda novos profissionais capacitados dentro de uma lógica prevista
no Plano de Desenvolvimento institucional do IFRN, com uso da sinergia entre as diferentes áreas e em destaque a de Tecnologia da Informação para ampliação da capacidade de monitoramento ambiental e dos sistemas ambientais empresariais.

Na indústria extrativa, destaca-se a produção de sal marinho que supera 90% da oferta nacional e a produção de petróleo, que após um ciclo de grande atuação estatal, entra num processo de amadurecimento dos poços de petróleo, com atuação mais forte da iniciativa privada associada também à necessidade de ampliação e intensificação das ações de recuperação das áreas anteriormente atingidas pela produção petrolífera. Existem, na região costeira, mais de 2 mil poços de extração, além de estações coletoras, gasodutos e unidades de tratamento de gás. Nessa atividade econômica, o Estado ainda se sobressai na produção de gás natural — que atualmente vem sendo aproveitado pelo setor industrial e automotivo — e na produção de calcário, além de outros minerais que abrem novas oportunidades para implantação das indústrias chamadas de segunda geração.

Com relação à agropecuária e à pesca, o Estado destaca-se na produção de frutas tropicais, criação de caprinos e ovinos e na criação de camarão. A fruticultura irrigada colabora em grande parcela da pauta de exportação. Na pecuária, é crescente a participação da caprinovinocultura no rebanho estadual devido à fácil adaptação dessa atividade às condições climáticas da região. A criação de camarão em cativéiro tornou-se uma atividade significativa para a economia do Estado. O litoral norte é visto como um dos maiores polos de produção de camarões em cativéiro do Brasil, tendo em torno de 1.500 hectares de viveiros. Ainda existe uma prática bastante difundida, que é o cultivo extensivo de espécies estuarinas em pequenos viveiros de construção rudimentares. Estes viveiros são geralmente construídos nas margens dos estuários, na sua maioria, na região mais inferior do estuário, em locais que apresentam uma boa ocorrência de pescado e constante renovação de água.

As atividades fabris, notadamente a indústria têxtil, tem-se feito presente no Estado, em grande parte, em consequência da reordenação das atividades econômicas do país. A chegada de grandes grupos empresariais impulsionou o setor que já respondeu por uma pauta significativa na exportação de camisetas de malha de algodão e tecidos, estando nesse momento em declínio tendo em vista a concorrência de produtos asiáticos.

Também surge como demanda nas questões ambientais a necessidade de dotar o estado de melhores indicadores de salubridade ambiental e profissionais qualificados para atendimento a esses indicadores. Dos 167 municípios que tem sistemas de abastecimento de água administrados pela concessionária estadual ou autarquias municipais, apenas 59 (36,6%) possuem sistemas de esgotamento sanitário, nenhum deles com 100% de cobertura, e desses, apenas 38 (23,6%) tratam os esgotos coletados, gerando, portanto, grandes impactos
ambientais com o lançamento diretamente nas vias públicas, corpos receptores ou mesmo contaminando mananciais subterrâneos. Ainda na área de saneamento ambiental, 151 municípios do estado não gerenciam adequadamente seus resíduos sólidos, encaminhando-os para lixões, existindo apenas três aterros sanitários, um recém instalado no município de Riacho da Cruz, outro em Mossoró, na região oeste do estado e o mais antigo de todos, instalado em Ceará-Mirim, que atende Natal e sua região metropolitana. Esses juntos tratam adequadamente cerca de 50% dos resíduos domiciliares gerados, por atender os maiores municípios do estado. Por outro lado, a política nacional de resíduos sólidos (PNRS) estabelecida pela lei 12305/2010 estabelece a exigência de que os municípios cumpram suas determinações com previsão de cortes no envio de verbas federais para aqueles que não cumprirem. Pesquisas desenvolvidas pelo Núcleo de Estudos em Saneamento Básico, base para a criação do curso de Engenharia Sanitária e Ambiental, indicam que um dos maiores entraves para a efetivação da PNSR no estado do Rio Grande do Norte é a falta de mão de obra qualificada que dê assistência técnica aos municípios.

Grande parte das atividades econômicas desenvolvidas atualmente no plano local, regional e mundial exercem uma forte pressão sobre o meio-ambiente, que pode causar impactos com necessidade de um gerenciamento adequado. A poluição, em seus diversos aspectos, a extinção de espécies da flora e da fauna, o desmatamento, o enchamento das cidades, as graves disparidades regionais e a má distribuição de renda são exemplos dos efeitos provocados pelo paradigma do desenvolvimento econômico. Contrapondo-se ao paradigma vigente, surge, na década de 1970, a noção de desenvolvimento sustentável, que analisa os problemas da sociedade global de forma sistêmica, onde economia, tecnologia, sociedade e política são vistas como aspectos interdependentes. Ressalta-se a necessidade de uma nova postura ética, caracterizada pela responsabilidade socioambiental por parte das gerações presentes e futuras.

O direito ao meio ambiente ecologicamente equilibrado, previsto na Constituição Federal (artigo 225) como um direito fundamental, essencial à manutenção da qualidade de vida. No Brasil, o meio ambiente é considerado bem de uso comum do povo, sendo imperativo ao Poder Público e à coletividade defendê-lo e preservá-lo para as gerações presentes e futuras. A Política Nacional do Meio Ambiente, instituída pela Lei Federal nº 6.938/81, contempla, dentre seus objetivos gerais, a preservação, a melhoria e a recuperação da qualidade ambiental, bem como a compatibilização do desenvolvimento econômico e social com o respeito à dignidade da vida humana, à manutenção do equilíbrio ecológico e proteção dos recursos ambientais.

Na mesma direção, o alto nível dos impactos negativos das atividades produtivas, a
crescente preferência dos consumidores por produtos considerados menos agressivos ao meio ambiente, além das exigências impostas pela legislação ambiental vigente, são fatores que impõem grandes desafios ao setor produtivo. O novo cenário evidencia que a proteção ambiental deixa de ser considerada responsabilidade exclusiva dos órgãos oficiais de meio ambiente e passa a ser compartilhada por todos os demais setores da sociedade. A incorporação do conceito de responsabilidade social na gestão das empresas tem multiplicado a demanda por profissionais qualificados para atuar na área de Engenharia Sanitária e Ambiental.

Diante do quadro caracterizado, impõe-se a necessidade da formação de profissionais cada vez mais qualificados para atuar no Estado, na região e no país visando contribuir para a melhoria da qualidade ambiental de forma a termos um desenvolvimento econômico e social com sustentabilidade.

Nesse sentido, a implantação do curso de Engenharia Sanitária e Ambiental atende, no âmbito da região metropolitana do Natal e do estado do Rio Grande do Norte, às demandas geradas por esse contexto social e político, aos princípios da lei de Diretrizes e Bases da Educação Nacional, ao Plano de Desenvolvimento da Educação, à função social e às finalidades do IFRN, assim como às diretrizes curriculares. Para se definirem as ofertas, são consideradas as demandas evidenciadas a partir de estudos e pesquisas sobre os arranjos produtivos, culturais e sociais locais, regionais e nacionais.

Assim, o IFRN propõe-se a oferecer o curso Engenharia Sanitária e Ambiental, por entender que estará contribuindo para a elevação da qualidade dos serviços prestados à sociedade, formando o Engenheiro Sanitarista e Ambiental, através de um processo de apropriação e de produção de conhecimentos científicos e tecnológicos, capaz de impulsionar a formação humana e o desenvolvimento econômico da região articulado aos processos de democratização e justiça social.

3. OBJETIVOS

O curso de Engenharia Sanitária e Ambiental do IFRN visa à formação do engenheiro de forma ampla, onde se busca, cada vez mais, a integração entre os conhecimentos científicos gerais e específicos da engenharia e os conhecimentos necessários à atuação plena e emancipatória na sociedade e no mundo do trabalho com foco na resolução das diferentes demandas ambientais.

Objetivo Geral do curso de Engenharia Sanitária e Ambiental

Formar recursos humanos na área, habilitando-os com uma formação fundamentada
em sólidos conhecimentos das ciências envoltas ao currículo de engenharia de modo que possuam autonomia para desenvolver habilidades e atuar nas atividades de pesquisa, desenvolvimento tecnológico e práticas associadas às reais demandas ambientais e sociais.

Objetivos específicos

- Formar engenheiros para o exercício da profissão junto ao mundo produtivo com foco na atuação nas demandas sanitárias e ambientais;
- Possibilitar a compreensão das tecnologias e processos associados à prática da engenharia sem perder de vista o seu impacto na sociedade e meio ambiente, sob um ponto de vista crítico e responsável;
- Preparar profissionais para atuar na iniciativa privada e no serviço público nas fases de projeto, construção e operação nas áreas de Construção Civil correlacionada à área sanitária e ambiental, Estrutura correlacionada à área sanitária e ambiental, Materiais correlacionados à área sanitária e ambiental, Geotecnia ambiental, Gestão Ambiental, Hidrogeologia, Hidrologia e Recursos Hídricos, Hidrotectia, Saúde Publica e Ambiental, Saneamento, Meio Ambiente no âmbito das modalidades de engenheiro sanitarista e ambiental.

4. REQUISITOS E FORMAS DE ACESSO

O acesso ao Curso de Engenharia Sanitária e Ambiental poderá se dar através de:

a) processos seletivos, aberto ao público ou por convênio, para o primeiro período do curso, atendendo às exigências da Lei nº 12.711/2012, regulamentada pelo Decreto nº 7.824/2012, da Lei 13.409/2016, regulamentada pelo Decreto nº 9.034/2017 e das Portarias Normativas MEC nº 18/2012 e 09/2017; ou

b) transferência, reingresso ou reopção para período compatível, posterior ao primeiro semestre do Curso. A figura 1 apresenta os requisitos de acesso ao curso.
Considerando a Lei nº 12.711/2012, a Lei 13.409/2016 e os respectivos Decretos e Portarias que as regulamentam, com o objetivo de manter o equilíbrio entre os distintos segmentos socioeconômicos que procuram matricular-se nas ofertas educacionais do IFRN e, também, com o intuito de contribuir para a democratização do acesso ao ensino superior, a Instituição reservará, em cada processo seletivo para ingresso por curso e turno, no mínimo 50% das vagas para estudantes que tenham cursado o Ensino Médio, integralmente, em escolas públicas, inclusive em cursos de educação profissional técnica, observadas as seguintes condições:

a) no mínimo cinquenta por cento das vagas reservadas serão destinadas a estudantes com renda familiar bruta igual ou inferior a um inteiro e cinco décimos salário-mínimo per capita; e no mínimo cinquenta por cento das vagas reservadas serão destinadas a estudantes com renda familiar bruta igual ou inferior a um inteiro e cinco décimos salário-mínimo per capita; e

b) proporção de vagas, por curso e turno, no mínimo igual a de pretos, pardos e indígenas e de pessoas com deficiência na população da unidade da Federação do local de oferta de vagas da instituição, segundo o último Censo Demográfico divulgado pelo Instituto Brasileiro de Geografia e Estatística – IBGE. Considerando a Lei 13.146/2015, que trata sobre o Estatuto da Pessoa com Deficiência, e visando democratizar o acesso ao ensino superior por este público, em consonância com o PDI do IFRN e com que está previsto na Resolução nº...
5/2017-CONSUP/IFRN, será reservada, em cada processo seletivo para ingresso por curso e turno, 5% das vagas, de ampla concorrência, para Pessoas com Deficiência.

Para as formas de acesso através de transferência, reopção ou reingresso, a readequação curricular do aluno ingressante deverá ser feita de modo a contemplar as disciplinas já cursadas anteriormente de acordo com os currículos e programas das disciplinas do seu curso de origem.

5. PERFIL PROFISSIONAL DE CONCLUSÃO DO CURSO

O Profissional de Engenharia Sanitária e Ambiental do IFRN, dentre os perfis definidos pela Resolução 218/73 do Conselho Federal de Engenharia e Agronomia, os Referenciais Nacionais dos Cursos de Engenharia e a Resolução CES/CNE 02 de 2019 e as Classificações Brasileira de Ocupação 2142-50 para Engenheiro Sanitarista e 2140-05 para Engenheiro Ambiental, tem a formação de um Engenheiro Sanitarista e Ambiental com foco para atuação nos mais diversos segmentos associados à resolução de problemas sanitários e ambientais fundamentais para a busca de um desenvolvimento pautado na responsabilidade ética, defesa do meio ambiente e da sustentabilidade ambiental nos seus diversos segmentos. Esse profissional será formado para se dedicar ao enfrentamento dos desafios necessários à melhoria contínua e sustentável de qualidade de vida da população e proteção do ambiente. Atuando de forma a elaborar ações de engenharia com eficiência econômica, atenção à qualidade social e a conservação dos recursos naturais. O profissional procura integrar o conhecimento técnico, científico, social e econômico na busca de propostas inovadoras para solucionar problemas ambientais que afetam a população e ambiente. Preocupa-se com o controle e preservação ambiental e combate à poluição do ar, da água, do solo e com o desenvolvimento de tecnologias inovadoras mais limpas de reutilização e adequação de produtos para o setor produtivo, além de propor alternativas mais eficientes para a mitigação e controle dos impactos causados pelas atividades produtivas.

As ações do Engenheiro Sanitarista e Ambiental, comprometidas com o desenvolvimento sustentável, tais competências constituem fonte estimuladora de atuação criativa para análise de problemas (políticos, éticos, econômicos, sociais, ambientais e culturais) e formulação de soluções. O engenheiro, portanto, deve estar preparado para atuar, permanentemente, na fronteira do conhecimento, buscando soluções técnicas e éticas para as situações-problema surgidas na dinâmica do exercício profissional.

O profissional egresso dos cursos de engenharia deve ser capacitado a compreender, aplicar e desenvolver novas tecnologias. Tais competências, comprometidas
com o desenvolvimento humano sustentável, constituem fonte estimuladora de atuação criativa na perspectiva da definição, da análise e da formulação de soluções de problemas políticos, éticos, econômicos, sociais, ambientais e culturais. O engenheiro, portanto, deve estar preparado para atuar, permanentemente, na fronteira do conhecimento e buscar soluções técnicas e éticas para as situações-problemas que se apresentam na dinâmica do exercício profissional.

Dessa forma, a base de conhecimentos científicos e tecnológicos, prevista no Art. 3º da Resolução 02/2019, o perfil do egresso deve compreender, entre outras, as seguintes características:

I. ter visão holística e humanista, ser crítico, reflexivo, criativo, cooperativo e ético e com forte formação técnica;
II. estar apto a pesquisar, desenvolver, adaptar e utilizar novas tecnologias, com atuação inovadora e empreendedora;
III. ser capaz de reconhecer as necessidades dos usuários, formular, analisar e resolver, de forma criativa, os problemas de Engenharia;
IV. adotar perspectivas multidisciplinares e transdisciplinares em sua prática;
V. considerar os aspectos globais, políticos, econômicos, sociais, ambientais, culturais e de segurança e saúde no trabalho; atuar com isenção e comprometimento com a responsabilidade social e com o desenvolvimento sustentável.
VI. atuar com isenção e comprometimento com a responsabilidade social e com o desenvolvimento sustentável.

O parágrafo único, da Resolução 2/2019 do CNE/CES, ainda, acrescenta que além das competências gerais, devem ser agregadas as competências específicas de acordo com a habilitação e com a ênfase do curso. Portanto, além das características anteriormente citadas, o curso deve proporcionar aos seus egressos de acordo com o Art. 4º da Resolução (CNE/CES nº 02/2019) as seguintes competências:

I. formular e conceber soluções desejáveis de engenharia, analisando e compreendendo os usuários dessas soluções e seu contexto:
 a) ser capaz de utilizar técnicas adequadas de observação, compreensão, registro e análise das necessidades dos usuários e de seus contextos sociais, culturais, legais, ambientais e econômicos;
 b) formular, de maneira ampla e sistémica, questões de engenharia, considerando o usuário e seu contexto, concebendo soluções criativas, bem como o uso de técnicas adequadas;
II. analisar e compreender os fenômenos físicos e químicos por meio de modelos simbólicos, físicos e outros, verificados e validados por experimentação:

c) ser capaz de modelar os fenômenos, os sistemas físicos e químicos, utilizando as ferramentas matemáticas, estatísticas, computacionais e de simulação, entre outras;

d) prever os resultados dos sistemas por meio de modelos;

e) conceber experimentos que gerem resultados reais para o comportamento dos fenômenos e sistemas em estudo;

f) verificar e validar os modelos por meio de técnicas adequadas;

g) conceber, projetar e analisar sistemas, produtos (bens e serviços), componentes ou processos:

h) ser capaz de conceber e projetar soluções criativas, desejáveis e viáveis, técnica e economicamente, nos contextos em que serão aplicadas;

i) projetar e determinar os parâmetros construtivos e operacionais para as soluções de Engenharia;

j) aplicar conceitos de gestão para planejar, supervisionar, elaborar e coordenar projetos e serviços de Engenharia;

III. implantar, supervisionar e controlar as soluções de Engenharia:

k) ser capaz de aplicar os conceitos de gestão para planejar, supervisionar, elaborar e coordenar a implantação das soluções de Engenharia

l) estar apto a gerir, tanto a força de trabalho quanto os recursos físicos, no que diz respeito aos materiais e a informação;

m) desenvolver sensibilidade global nas organizações;

n) projetar e desenvolver novas estruturas empreendedoras e soluções inovadoras para os problemas;

o) realizar a avaliação crítico-reflexiva dos impactos das soluções de Engenharia nos contextos social, legal, econômico e ambiental;

IV. comunicar-se eficazmente nas formas escrita, oral e gráfica:

p) a) ser capaz de expressar-se adequadamente, seja na língua pátria ou em idioma diferente do Português, inclusive por meio do uso consistente das tecnologias digitais de informação e comunicação (TDICs), mantendo-se sempre atualizado em termos de métodos e tecnologias disponíveis;

V. trabalhar e liderar equipes multidisciplinares:
q) ser capaz de interagir com as diferentes culturas, mediante o trabalho em equipes presenciais ou à distância, de modo que facilite a construção coletiva;

r) atuar, de forma colaborativa, ética e profissional em equipes multidisciplinares, tanto localmente quanto em rede;

s) gerenciar projetos e liderar, de forma proativa e colaborativa, definindo as estratégias e construindo o consenso nos grupos;

t) reconhecer e conviver com as diferenças socioculturais nos mais diversos níveis em todos os contextos em que atua (globais/locais);

u) preparar-se para liderar empreendimentos em todos os seus aspectos de produção, de finanças, de pessoal e de mercado;

VI. conhecer e aplicar com ética a legislação e os atos normativos no âmbito do exercício da profissão:

v) ser capaz de compreender a legislação, a ética e a responsabilidade profissional e avaliar os impactos das atividades de Engenharia na sociedade e no meio ambiente;

w) atuar sempre respeitando a legislação, e com ética em todas as atividades, zelando por que isto ocorra também no contexto em que estiver atuando; e

VII. aprender de forma autônoma e lidar com situações e contextos complexos, atualizando-se em relação aos avanços da ciência, da tecnologia e aos desafios da inovação:

x) ser capaz de assumir atitude investigativa e autônoma, com vistas à aprendizagem contínua, à produção de novos conhecimentos e ao desenvolvimento de novas tecnologias;

y) aprender a aprender;

A atividade de Engenheiro Sanitarista e Ambiental é regulamentada segundo o CONFEA de acordo com as resoluções no. 218/73, 310/86, 477/00 e 473/2002, segundo estas normativas a profissão de Engenheiro Sanitarista e Ambiental é caracterizada por:

1- Supervisionar, coordenar e prestar orientação técnica;

2- Estudo, planejamento, projeto e especificações;

3- Estudo de viabilidade técnico-econômica;

4- Assistência, assessoria e consultoria;

5- Direção de obra e serviço técnico;

6- Vistoria, perícia, avaliação, arbitramento, laudo e parecer técnico;

7- Desempenho de cargo e função técnica;
8- Ensino, pesquisa, análise, experimentação, ensaio e divulgação técnica, extensão;
9- Elaboração de orçamento;
10- Padronização, mensuração e controle de qualidade;
11- Execução de obra e serviço técnico;
12- Fiscalização de obra e serviço técnico;
13- Produção técnica especializada;
14- Condução de trabalho técnico;
15- Condução de equipe de instalação, montagem, operação, reparo ou manutenção;
16- Execução de instalação, montagem e reparo;
17- Operação e manutenção de equipamentos e instalação;
18- Execução de desenhos técnicos.

Segundo as mesmas normativas citadas anteriormente, as 18 atividades previstas para o Engenheiro Sanitarista e Ambiental estão associadas às seguintes temáticas:

- sistemas de abastecimento de água, incluindo captação, adução, reservaçã o, distribuição e tratamento de água;
- sistemas de distribuição de excreta e de águas residuárias (esgoto) em soluções individuais ou sistemas de esgotos, incluindo tratamento;
- coleta, transporte e tratamento de resíduos sólidos (lixo);
- controle sanitário do ambiente, incluindo o controle de poluição ambiental;
- controle de vetores biológicos transmissores de doenças (artrópodes e roedores de importância para a saúde pública);
- saneamento de edificações e locais públicos, tais como piscinas, parques e áreas de lazer, recreação e esporte em geral;
- administração, gestão e ordenamento ambientais e ao monitoramento e mitigação de impactos ambientais, seus serviços afins e correlatos.

A abrangência da atuação do profissional de Engenharia Sanitária e Ambiental se estende a organismos públicos, empresas privadas, autarquias, agências reguladoras, prefeituras, organizações não governamentais e instituições de ensino e pesquisa. Destaca-se que órgãos ambientais e empresas concessionárias de serviços de saneamento como abastecimento público de água, coleta, tratamento e disposição final de esgotos, resíduos sólidos e outros, prescindem destes profissionais.

atuación do profissional em Engenharia Sanitária e Ambiental tem se configurado como um dos que mais cresce no país, a exemplo do que ocorre principalmente em países mais desenvolvidos.

6. ORGANIZAÇÃO CURRICULAR DO CURSO

Assim, o sentido de um ensino verticalizado tendo o trabalho, a ciência, a cultura e a tecnologia e o empreendedorismo como cerne de sua proposta educacional, articulando ensino, pesquisa e extensão traz sobretudo, novas perspectivas e desafios ao fazer pedagógico, à identidade do corpo docente da área cada vez mais coeso a despeito de suas formações diversificadas, bem como ressignificar o currículo em ação. A organização curricular desse PPC está de acordo com os documentos oficiais Resolução nº 2/2007 e o Parecer CNE/CES nº 8/2007 e à luz das Diretrizes Curriculares Nacionais para os Cursos de Engenharia – DCNs (CNE. 2019), que estimula um (re)desenho de currículo organizado para o desenvolvimento das competências previstas para o egressos, assim como a implantação que garanta o acompanhamento contínuo de dados relativos aos resultados da aprendizagem dos estudantes e consequentemente no processo em face dos resultados indesejados (OLIVEIRA, 2019. p 86).

Como se sabe, articular o nível técnico ao ensino superior é um grande desafio no âmbito institucional o que vem a representar um grande ganho na formação dos estudantes que ingressam na instituição para cursar o ensino técnico integrado ao ensino médio. Com a proposta em curso, passam a vislumbrar, ou seja, terão oportunidade de, na mesma instituição, dar sequência e aprofundamento aos estudos na área tecnológica. O ensino, a pesquisa e a extensão se integram de modo significativo para a aprendizagem dos discentes com um maior alcance de conhecimentos e de articulação entre teoria e prática, possibilitando maior diálogo entre ambientes de pesquisa, produção de conhecimentos e solução de problemas sociais e ambientais. Além disso, propiciará ganhos sócio profissionais no âmbito do acesso qualificado aos espaços formativos do sistema educacional brasileiro.

Atendendo ao princípio básico de organização dos componentes curriculares, a verticalização implica o reconhecimento de fluxos que favorecem a construção de itinerários de formação entre os diversos cursos de uma área profissional, quais sejam: qualificação profissional, formação educacional básica com nível técnico, graduação e
pós-graduação tecnológica *lato e stricto sensu.*

Assim, o sentido de um ensino verticalizado tendo o trabalho, a ciência, a cultura e a tecnologia e o empreendedorismo como cerne de sua proposta educacional, articulando ensino, pesquisa e extensão traz sobretudo, novas perspectivas e desafios ao fazer pedagógico, à identidade do corpo docente da área cada vez mais coeso a despeito de suas formações diversificadas, bem como ressignificar o currículo em ação.

6.1 Estrutura curricular

A estrutura curricular proposta neste documento mantém consonância com os documentos oficiais dos cursos superiores de graduação, devendo ser norteada nos seguintes princípios e características:

- sintonia com a sociedade e o mundo produtivo;
- diálogo com os arranjos produtivos culturais, locais e regionais;
- preocupação com o desenvolvimento humano sustentável;
- estabelecimento de metodologias que viabilizem a ação pedagógica interdisciplinar e transdisciplinar dos saberes;
- realização de atividades em ambientes de formação para além dos espaços convencionais;
- interação de saberes teórico-práticos ao longo do curso;
- percepção da pesquisa e da extensão como sustentadoras das ações na construção do conhecimento;
- construção da autonomia dos discentes na aprendizagem;
- promoção da mobilidade acadêmica por meio de cooperação técnica intrainstitucional e interinstitucional, possibilitando o compartilhamento de recursos, a construção de projetos de pesquisa e de extensão intrainstitucionais e interinstitucionais;
- possibilidade de alteração no itinerário curricular para os estudantes intra e interinstitucional;
- estabelecimento de procedimentos inovadores para o acesso e para a certificação dos estudantes;
- comparabilidade de currículo, com adoção de procedimentos que concorram para as ações de ensino, pesquisa e extensão;
- integração da comunidade discente de diferentes níveis e modalidades de ensino, contribuindo para a concretização do princípio da verticalização.

A organização curricular dos cursos de engenharia observa os referenciais legais que
norteiam as instituições formadoras. Tais referenciais definem o perfil da formação profissional, a atuação dos profissionais e os requisitos básicos necessários à formação do engenheiro. Além disso, estabelecem conteúdos curriculares, modos de prática profissional, procedimentos de organização e de funcionamento dos cursos.

A organização curricular do curso de Engenharia Sanitária e Ambiental observa as determinações legais presentes na LDB nº 9.394/96, na resolução CNE/CES nº 02/2007 (que determina as cargas horárias e tempos de duração mínimos para cursos de graduação), o Parecer CNE/CES nº 8/2007, nas Diretrizes Curriculares Nacionais para os cursos de engenharia ditadas pela Resolução CNE/CES nº 02/2019 (a qual disciplina a carga horária mínima para os núcleos de formação geral e profissionalizante especificados em seu escopo) e no PPP do IFRN.

A proposta pedagógica do curso está organizada por núcleos que favorecem a prática da interdisciplinaridade, apontando para o reconhecimento da necessidade de uma educação profissional e tecnológica integradora de conhecimentos científicos e experiências e saberes advindos do mundo do trabalho, e possibilitando, assim, a construção do pensamento tecnológico crítico e a capacidade de intervir em situações concretas. Esses núcleos são definidos, em seus conteúdos programados e suas cargas horárias, pela resolução CNE/CES nº 02/2007 e pelo PPP institucional.

A Resolução CNE/CES 02/2019 e o PPP institucional orientam que o desenho curricular dos cursos de engenharia pode ser organizado em núcleos, denominados de núcleo de conhecimentos básicos, núcleo de conhecimentos profissionais e núcleo de conhecimentos específicos, devem, por sua vez, estarem distribuídos, cada um, ao longo de todo o percurso formativo do engenheiro, de forma a garantir a integração entre eles.

Tal proposta de articulação curricular, conforme é exibida na Figura 2, se concatena com os princípios já praticados na oferta nos cursos do IFRN que adota a tendência de articulação curricular continuada, distribuída ao longo de toda a trajetória do curso. Na qual a integração de saberes ocorre por intermédio da articulação entre os núcleos, componentes da matriz curricular e a prática de forma interdisciplinar e transdisciplinar ao longo do percurso de formação do estudante.

A proposta pedagógica apresentada para o curso de Engenharia Sanitária e

Tal proposta possibilita a integração entre formação científica e formação profissionalizante específica (em Engenharia Sanitária e Ambiental) do profissional ao organizar a estrutura curricular em dois núcleos, denominados de Fundamental e Científico e Tecnológico. Com base na concepção curricular apresentada no PPP institucional, o curso apresenta a arquitetura curricular exibida na Figura 2.

Figura 2 – Desenho curricular definido para os cursos de Engenharia do IFRN.

Fonte: Comissão de elaboração do PPC de Engenharia Sanitária e Ambiental (2019)

O estudante que integralizar os componentes curriculares previstos nos núcleos, bem como a prática profissional e a respectiva carga horária proposta para o curso de Engenheiro Sanitário e Ambiental receberá, ao cumprir todos os requisitos listados neste documento, o diploma de engenheiro.

O currículo do curso de Engenharia Sanitária e Ambiental IFRN, portanto, com base nos referenciais que estabelecem a organização dos cursos de engenharia, está estruturado em núcleos constituídos com a seguinte concepção:

• **Núcleo fundamental**: Relativo a conhecimentos científicos imprescindíveis ao bom desempenho acadêmico dos ingressantes, e contempla, ainda, proposta de revisão de conhecimentos de formação geral que servirão de base para a formação técnica. Tem como elementos indispensáveis o domínio da língua materna e os conceitos básicos das ciências, de acordo com as necessidades do curso;

• **Núcleo científico e tecnológico**: Relativo aos conhecimentos que fundamentam o estudo da engenharia enquanto ciência. Abordam os conceitos técnicos gerais necessários ao desenvolvimento do estudante nas áreas profissionalizantes em que ingressará. Articulando saber acadêmico, pesquisa e experimentação;
 Curso Superior de Engenharia Sanitária e Ambiental na modalidade presencial IFRN

- **Unidade básica (conteúdos básicos):** Relativa a conhecimentos de formação científica para o ensino superior e de formação tecnológica básica;

- **Unidade profissionalizante (conteúdos profissionalizantes):** Relativo a conhecimentos que fundamentam a formação em Engenharia de Sanitária e ambiental extendendo-se a todas as áreas de atuação do profissional. Compreende os saberes disciplinares que norteiam a formação do engenheiro, o uso das linguagens técnica e científica de cada setor das engenharias que abordam o uso sustentável dos recursos naturais e o controle dos impactos sobre esses recursos, e os fundamentos científicos e tecnológicos inerentes à formação do profissional da área;

- **Unidade específica (conteúdos específicos):** Relativa à formação técnica específica, de acordo com a engenharia, contemplando conhecimentos de estreita articulação com o curso, elementos expressivos para a integração curricular e conhecimentos da formação específica, de acordo com o campo de conhecimentos da área, com a atuação profissional e as regulamentações do exercício da profissão.

As diretrizes da formação profissionalizante orientadoras do currículo e assumidas no Projeto Político-Pedagógico do IFRN fundamentam-se nos seguintes princípios:

- conceito da realidade concreta como síntese de múltiplas relações;
- compreensão que homens e mulheres produzem sua condição humana como seres histórico-sociais capazes de transformar a realidade;
- integração entre a educação básica e a educação profissional, tendo como núcleo básico a ciência, o trabalho e a cultura;
- organização curricular pautada no trabalho e na pesquisa como princípios educativos;
- respeito à pluralidade de valores e universos culturais;
- respeito aos valores estéticos políticos e éticos, traduzidos na estética da sensibilidade, na política da igualdade e na ética da identidade;
- construção do conhecimento, compreendida mediante as interações entre sujeito e objeto e na intersubjetividade;
- compreensão da aprendizagem humana como um processo de interação social;
- inclusão social, respeitando-se a diversidade, quanto às condições físicas, intelectuais, culturais e socioeconômicas dos sujeitos;
- prática pedagógica orientada pela interdisciplinaridade, contextualização e flexibilidade;
• desenvolvimento de competências básicas e profissionais a partir de conhecimentos científicos e tecnológicos, formação cidadã e sustentabilidade ambiental;
• formação de atitudes e capacidade de comunicação, visando a melhor preparação para o trabalho;
• construção identitária dos perfis profissionais com a necessária definição da formação para o exercício da profissão;
• flexibilização curricular, possibilitando a atualização, permanente, dos planos de cursos e currículo;
• reconhecimento dos educadores e dos educandos como sujeitos de direitos à educação, ao conhecimento, à cultura e à formação de identidades, articulados à garantia do conjunto dos direitos humanos.

Esses são princípios de bases filosóficas e epistemológicas que dão suporte à estrutura curricular do curso e, consequentemente, fornecem os elementos imprescindíveis à definição do perfil do Engenheiro Sanitarista e Ambiental.

A matriz curricular do curso está organizada por disciplinas em regime de créditos, com período semestral, com 3.540 horas destinadas à formação do engenheiro sanitarista e ambiental, 320 horas destinadas à Prática Profissional, das quais, 160 horas ao Estágio Curricular Obrigatório 120 horas ao Projeto Final de Curso e 40 horas às atividades complementares obrigatórias; 10 horas são dedicadas aos seminários curriculares e 430 horas às atividades de extensão, totalizando uma carga horária de 4.300 horas.

As disciplinas que compõem a matriz curricular estão articuladas entre si e fundamentadas nos princípios estabelecidos no PPP institucional. A disposição temporal das disciplinas do curso de Engenharia Sanitária e Ambiental, divididas entre os núcleos articuladores propostos, é mostrada no Quadro 2, enquanto o fluxograma das suas componentes curriculares obrigatórias é apresentado na Figura 3.

Quadro 2 - Matriz curricular do curso de Engenharia Sanitária e Ambiental presencial.

<table>
<thead>
<tr>
<th>DISCIPLINAS</th>
<th>1º</th>
<th>2º</th>
<th>3º</th>
<th>4º</th>
<th>5º</th>
<th>6º</th>
<th>7º</th>
<th>8º</th>
<th>9º</th>
<th>10º</th>
<th>Hora/Aula</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núcleo Fundamental</td>
<td></td>
</tr>
<tr>
<td>Metodologia Científica</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Leitura e Produção de Textos Acadêmicos</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Química Geral</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Subtotal de carga-horária do Núcleo Fundamental</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>150</td>
</tr>
</tbody>
</table>
Núcleo Científico-Tecnológico

Unidade Básica

<table>
<thead>
<tr>
<th>Curso</th>
<th>Horas</th>
<th>Carga Horária</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introdução à Eng. Sanit. e Amb.</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Algoritmo e Estrutura de Dados</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Cálculo para Engenharia I</td>
<td>6</td>
<td>120</td>
</tr>
<tr>
<td>Desenho Técnico</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Física Geral I</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Álgebra Linear Aplicada</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Des. Téc. Assist. por Comp.</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Química Analítica</td>
<td>6</td>
<td>120</td>
</tr>
<tr>
<td>Linguagem de Programação</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Cálculo para Engenharia II</td>
<td>6</td>
<td>120</td>
</tr>
<tr>
<td>FÍSICA GERAL II</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Cálculo para Engenharia III</td>
<td>6</td>
<td>120</td>
</tr>
<tr>
<td>Física Geral III</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Estatística Aplicada</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Ciência e Tecnologia dos Materiais</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Écologia e Ciências Ambientais</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Resistência dos Materiais</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Fenômenos dos Transportes</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Cálculo Numérico</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Administ., Empreend. e Inovação</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Eletrotécnica Básica</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Engenharia Econômica</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Subtotal de carga-horária do Unidade Básica</td>
<td>20/28</td>
<td>8/8 0/2 0/4 0</td>
</tr>
</tbody>
</table>

Unidade Profissionalizante

<table>
<thead>
<tr>
<th>Curso</th>
<th>Horas</th>
<th>Carga Horária</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologia Sanitária e Ambiental</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Hidráulica e Hidrotécnica</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Análise de Águas e Efluentes</td>
<td>6</td>
<td>120</td>
</tr>
<tr>
<td>Sistemas de Abastecimento de Água</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Hidrologia Aplicada</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Poluição Ambiental I</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Planejamento Urbano e Ambiental</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Sistemas de Esgotamento Sanitário</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Disciplina</td>
<td>1º</td>
<td>2º</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Tratamento de Águas Residuárias</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sistema de Gestão Ambiental</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Gestão de Recursos Hídricos</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Gestão e Cont. de Emis. Atmosf.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Estudos de Impacto Ambiental</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Gestão de Resíduos Sólidos</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sistemas de Drenagem Urbana</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Projeto de Sist. de Abast. de Água</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Projeto de Sist. de Esgot. Sanitário</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Manejo e Recup. de Áreas Degradadas</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sistemas de Trat. de Resíduos Sólidos</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Subtotal de carga-horária do</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unidade Profissionalizante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidade Específica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direito Ambiental</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Geologia e Solos</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sensor. Remoto e Geoproc. Aplicado</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Topografia</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mecânica dos Solos</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Materiais de Construção</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Economia Ambiental</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Saúde e Segurança do Trabalho</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Estrat. de Sustent. para Organiz. Prod.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Subtotal de carga-horária do</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unidade Específica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal de carga-horária do Núcleo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Científico-Tecnológico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total de carga horária de disciplinas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obrigatórias</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCIPLINAS OPTATIVAS

<table>
<thead>
<tr>
<th>Número de aulas semanal por Período / Semestre</th>
<th>Carga-horário total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º 2º 3º 4º 5º 6º 7º 8º 9º 10º</td>
<td>Hora/Aula Hora</td>
</tr>
<tr>
<td>1º 2º 3º 4º 5º 6º 7º 8º 9º 10º</td>
<td>4.160 3.120</td>
</tr>
<tr>
<td>1º 2º 3º 4º 5º 6º 7º 8º 9º 10º</td>
<td>4.360 3.270</td>
</tr>
<tr>
<td>Subtotal de carga-horária de disciplinas optativas</td>
<td>0</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total de carga-horária incluindo disciplinas optativas</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMINÁRIOS CURRICULARES</th>
<th>Carga-horária semestral</th>
<th>Carga-horária total</th>
<th>Hora/ Aula</th>
<th>Hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º</td>
<td>2º</td>
<td>3º</td>
<td>4º</td>
<td>5º</td>
</tr>
<tr>
<td>Seminário de Integração Acadêmica</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminário de Orientação de Estágio Supervisionado</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminário de Orientação ao Projeto Final de Curso</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total de carga-horária para Seminários Curriculares</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRÁTICA PROFISSIONAL</th>
<th>Carga-horária</th>
<th>Hora/ Aula</th>
<th>Hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atividades Complementares</td>
<td>40</td>
<td>53</td>
<td>40</td>
</tr>
<tr>
<td>Projeto Final de Curso I</td>
<td></td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Projeto Final de Curso II</td>
<td></td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Estágio Supervisionado *</td>
<td></td>
<td>160</td>
<td>240</td>
</tr>
<tr>
<td>Total de carga-horária de prática profissional</td>
<td></td>
<td>453</td>
<td>320</td>
</tr>
</tbody>
</table>

*O aluno poderá começar seu estágio obrigatório a partir do 7º período

<table>
<thead>
<tr>
<th>UNIDADE CURRICULAR DE EXTENSÃO (UCE)</th>
<th>Carga-horária</th>
<th>Carga-horário total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introdução às atividades de extensão</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Atividade Curricular de Extensão</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>a) programas;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) projetos;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) cursos e oficinas;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) prestação de serviços;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) eventos*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total de carga-horária para Atividades de extensão</td>
<td>430</td>
<td>573</td>
</tr>
</tbody>
</table>

TOTAL DE CARGA-HORÁRIA DO CURSO 4.300

TOTAL DE CARGA-HORÁRIA PARA CURRICULARIZAÇÃO DA EXTENSÃO 430

*Fonte: Comissão de elaboração do PPC de Engenharia Sanitária e Ambiental (2019)
A carga horária máxima para a realização de eventos é de 100 horas
A distribuição da carga horária nos núcleos curriculares objeto do currículo está exposto no Quadro 3.

Quadro 3 - Distribuição de carga horária do curso de Engenharia Sanitária e Ambiental

<table>
<thead>
<tr>
<th>Núcleos Curriculares</th>
<th>H/aula</th>
<th>CH</th>
<th>Distribuição (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núcleo Fundamental</td>
<td>200</td>
<td>150</td>
<td>3,49%</td>
</tr>
<tr>
<td>Núcleo Científico Tecnológico</td>
<td>4160</td>
<td>3120</td>
<td>72,56%</td>
</tr>
<tr>
<td>Disciplinas Optativas</td>
<td>360</td>
<td>270</td>
<td>6,28%</td>
</tr>
<tr>
<td>Seminários Curriculares</td>
<td>10</td>
<td>0,93%</td>
<td></td>
</tr>
<tr>
<td>Atividades Complementares</td>
<td>-</td>
<td>40</td>
<td>0,93%</td>
</tr>
<tr>
<td>Projeto Final de Curso</td>
<td>120</td>
<td>2,79%</td>
<td></td>
</tr>
<tr>
<td>Estágio Supervisionado</td>
<td>160</td>
<td>3,72%</td>
<td></td>
</tr>
<tr>
<td>Unidade Curricular de Extensão (UCE)</td>
<td>430</td>
<td>10,0%</td>
<td></td>
</tr>
<tr>
<td>Total de CH do Curso</td>
<td>-</td>
<td>4300</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Fonte: Comissão de elaboração do PPC de Sanitária e Ambiental (2019)

As disciplinas que compõem a matriz curricular estão articuladas entre si, fundamentadas nos princípios estabelecidos no PPP institucional e atendendo ao previsto na Resolução CNE/CES nº. 02/2019 e Parecer CNE/CES nº 01/2019, conforme é apresentado nos Quadros 2 e 3. Essa articulação se dá igualmente na forma da cadeia de integração vertical entre cada disciplina e as disciplinas de períodos precedentes que devem ser cursadas em uma sequência estabelecida pela a normatização de disciplinas que se configuram em pré-requisitos obrigatórios para dar acesso às disciplinas subsequentes articuladas a estas. Essa integração é garantida pela sequência de conteúdos que servem de alicerce para a adequada apropriação de conteúdos subsequentemente alocados na matriz e deverá realçar outras formas de orientação inerentes à atividade docente, entre as quais se destaca o preparo para:

- o ensino visando à aprendizagem do aluno;
- o exercício de atividades de enriquecimento cultural;
- o aprimoramento em práticas investigativas;
- a elaboração e a execução de projetos de desenvolvimento dos conteúdos curriculares;
- o uso de tecnologias da informação e da comunicação e de metodologias, estratégias e materiais de apoio inovadores; e
- o desenvolvimento de hábitos de colaboração e de trabalho em equipe.

A cadeia de pré-requisitos forma a articulação entre os diversos eixos que orientam as habilidades acadêmicas e atributos científicos relativos às diversas atividades concernentes à
atuação do profissional egresso do curso de Engenharia de Sanitária e Ambiental, estes pré-requisitos formam um aparato fundamental para o bom desempenho do estudante quando da sua inserção em cada disciplina elencada na sequência da sua matriz curricular. Estas cadeias de pré-requisitos também podem ser integralmente visualizadas no fluxograma da matriz curricular apresentada na Figura 3.

As disciplinas pré-requisitos formam a articulação entre os diversos eixos que orientam as habilidades acadêmicas e atributos científicos relativos às diversas atividades concernentes à atuação do profissional egresso do curso de Engenharia Sanitária e Ambiental, estes pré-requisitos formam um aparato fundamental para o bom desempenho do estudante quando da sua inserção em cada disciplina elencada na sequência da sua matriz curricular. Os componentes curriculares que são necessários para dar ao estudante o acesso a cada disciplina da matriz são relacionados no quadro 4, que apresenta cada uma das disciplinas elencadas na sequência do período letivo a que pertence, seu número de créditos, respectiva carga horária e às relacionam aos pré-requisitos necessários. Os pré-requisitos podem ser integralmente visualizados na matriz curricular apresentada na Figura 3.
Figura 3 – Fluxograma da matriz curricular do curso de Engenharia Sanitária e Ambiental.

Fonte: Comissão de elaboração do PPC de Engenharia Sanitária e Ambiental (2019)
Quadro 4 - Matriz curricular do Curso de Engenharia Sanitária e Ambiental

<table>
<thead>
<tr>
<th>MATRIZ CURRICULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º Período</td>
</tr>
<tr>
<td>Código</td>
</tr>
<tr>
<td>ESA.0002</td>
</tr>
<tr>
<td>ENG.0003</td>
</tr>
<tr>
<td>ESA.0003</td>
</tr>
<tr>
<td>CIV.0003</td>
</tr>
<tr>
<td>ESA.0001</td>
</tr>
<tr>
<td>ENG.0018</td>
</tr>
<tr>
<td>ENG.0012</td>
</tr>
<tr>
<td>Total no semestre</td>
</tr>
</tbody>
</table>

| 2º Período |
Código	Disciplina	Cr	CH	Requisitos
ENG.0004	Cálculo para Engenharia II	6	90	Cálculo para Engenharia I
ENG.0006	Álgebra Linear Aplicada	4	60	Cálculo para Engenharia I
ESA.0005	Física Geral II	4	60	Física Geral I
CIV.0007	Desenho Técnico Assistido por Computador	4	60	Desenho Técnico
ESA.0004	Química Analítica	6	90	Química Geral
ENG.0019	Linguagem de programação	4	60	Algoritmo e Estrutura de Dados
ESA.0055	Introdução às Atividades de Extensão	2	30	
Total no semestre	30	450		

| 3º Período |
Código	Disciplina	Cr	CH	Requisitos
ENG.0005	Cálculo para Engenharia III	6	90	Cálculo para Engenharia II
ESA.0007	Estatística Aplicada	4	60	Álgebra Linear Aplicada
ESA.0006	Física Geral III	4	60	Física Geral II
CIV.0018	Topografia	4	60	Desenho Técnico Assistido por Computador
ESA.0033	Geologia e Solos	2	30	Química Analítica
CIV.0002	Ciências e Tecnologia dos Materiais	2	30	Química Analítica
ESA.0008	Ecologia e Ciências Ambientais	4	60	Química Analítica
Total no semestre	26	390		
4º Período

<table>
<thead>
<tr>
<th>Código</th>
<th>Disciplina</th>
<th>Cr</th>
<th>CH</th>
<th>Requisitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG.0028</td>
<td>Resistência dos Materiais</td>
<td>4</td>
<td>60</td>
<td>Cálculo para Engenharia III</td>
</tr>
<tr>
<td>ESA.0009</td>
<td>Fenômenos dos Transportes</td>
<td>4</td>
<td>60</td>
<td>Cálculo para Engenharia III, Física Geral III</td>
</tr>
<tr>
<td>ENG.0014</td>
<td>Metodologia Científica</td>
<td>2</td>
<td>30</td>
<td>Leitura e Produção de Textos Acadêmicos</td>
</tr>
<tr>
<td>ESA.0034</td>
<td>Sensoriamento Remoto e Geoprocessamento Aplicado</td>
<td>6</td>
<td>90</td>
<td>Topografia</td>
</tr>
<tr>
<td>ESA.0035</td>
<td>Mecânica dos Solos</td>
<td>4</td>
<td>60</td>
<td>Geologia e Solos</td>
</tr>
<tr>
<td>ESA.0036</td>
<td>Materiais de Construção</td>
<td>4</td>
<td>60</td>
<td>Ciências e Tecnologia dos Materiais</td>
</tr>
<tr>
<td>ESA.0012</td>
<td>Microbiologia Sanitária e Ambiental</td>
<td>4</td>
<td>60</td>
<td>Ecologia e Ciências Ambientais</td>
</tr>
<tr>
<td>Total no semestre</td>
<td></td>
<td>28</td>
<td>360</td>
<td></td>
</tr>
</tbody>
</table>

5º Período

<table>
<thead>
<tr>
<th>Código</th>
<th>Disciplina</th>
<th>Cr</th>
<th>CH</th>
<th>Requisitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA.0010</td>
<td>Cálculo Numérico</td>
<td>4</td>
<td>60</td>
<td>Resistência dos Materiais, Fenômenos dos Transportes</td>
</tr>
<tr>
<td>ESA.0013</td>
<td>Hidráulica e Hidrotécnica</td>
<td>4</td>
<td>60</td>
<td>Fenômenos dos Transportes</td>
</tr>
<tr>
<td>CIV.0012</td>
<td>Eletrotécnica Básica</td>
<td>4</td>
<td>60</td>
<td>Fenômenos dos Transportes</td>
</tr>
<tr>
<td></td>
<td>Disciplinas optativas</td>
<td></td>
<td></td>
<td>Conforme as disciplinas</td>
</tr>
<tr>
<td>ESA.0014</td>
<td>Análise de Águas e Efluentes</td>
<td>6</td>
<td>90</td>
<td>Microbiologia Sanitária e Ambiental</td>
</tr>
<tr>
<td></td>
<td>Disciplinas optativas</td>
<td></td>
<td></td>
<td>Conforme as disciplinas</td>
</tr>
<tr>
<td>ESA.0032</td>
<td>Direito Ambiental</td>
<td>4</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Total no semestre</td>
<td></td>
<td>28</td>
<td>360</td>
<td></td>
</tr>
</tbody>
</table>

6º Período

<table>
<thead>
<tr>
<th>Código</th>
<th>Disciplina</th>
<th>Cr</th>
<th>CH</th>
<th>Requisitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA.0015</td>
<td>Sistemas de Abastecimento de Água</td>
<td>4</td>
<td>60</td>
<td>Hidráulica e Hidrotécnica</td>
</tr>
<tr>
<td>ESA.0016</td>
<td>Hidrologia Aplicada</td>
<td>4</td>
<td>60</td>
<td>Hidráulica e Hidrotécnica</td>
</tr>
<tr>
<td>ESA.0038</td>
<td>Saúde e Segurança do Trabalho</td>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>ESA.0018</td>
<td>Planejamento Urbano e Ambiental</td>
<td>4</td>
<td>60</td>
<td>Sensoriamento Remoto e Geoprocessamento Aplicado</td>
</tr>
<tr>
<td>ESA.0017</td>
<td>Poluição Ambiental I</td>
<td>4</td>
<td>60</td>
<td>Análise de Águas e Efluentes, Direito Ambiental</td>
</tr>
<tr>
<td></td>
<td>Disciplinas optativas</td>
<td></td>
<td></td>
<td>Conforme as disciplinas</td>
</tr>
<tr>
<td>ESA.0037</td>
<td>Economia Ambiental</td>
<td>2</td>
<td>30</td>
<td>Direito Ambiental</td>
</tr>
<tr>
<td>Total no semestre</td>
<td></td>
<td>24</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Disciplina</td>
<td>Cr</td>
<td>CH</td>
<td>Disciplina</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>ESA.0020</td>
<td>Tratamento de Águas para Abastecimento</td>
<td>4</td>
<td>60</td>
<td>Sistemas de Abastecimento de Água</td>
</tr>
<tr>
<td>ESA.0022</td>
<td>Gestão dos Recursos Hídricos</td>
<td>4</td>
<td>60</td>
<td>Hidrologia Aplicada</td>
</tr>
<tr>
<td></td>
<td>Disciplinas optativas</td>
<td>2</td>
<td>30</td>
<td>Conforme as disciplinas</td>
</tr>
<tr>
<td>ESA.0019</td>
<td>Sistemas de Esgotamento Sanitário</td>
<td>4</td>
<td>60</td>
<td>Planejamento Urbano e Ambiental, Poluição Ambiental I</td>
</tr>
<tr>
<td>ESA.0021</td>
<td>Poluição Ambiental II</td>
<td>4</td>
<td>60</td>
<td>Poluição Ambiental</td>
</tr>
<tr>
<td>ESA.0039</td>
<td>Estratégias de Sustentabilidade para Organizações Produtivas</td>
<td>4</td>
<td>60</td>
<td>Economia Ambiental</td>
</tr>
<tr>
<td>ENG.0017</td>
<td>Engenharia Econômica</td>
<td>2</td>
<td>30</td>
<td>Economia Ambiental</td>
</tr>
<tr>
<td></td>
<td>Total no semestre</td>
<td>24</td>
<td>360</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Disciplina</th>
<th>Cr</th>
<th>CH</th>
<th>Requisitos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disciplinas optativas</td>
<td>2</td>
<td>30</td>
<td>Conforme as disciplinas</td>
</tr>
<tr>
<td>ESA.0027</td>
<td>Sistemas de Drenagem Urbana</td>
<td>4</td>
<td>60</td>
<td>Gestão dos Recursos Hídricos</td>
</tr>
<tr>
<td>ESA.0059</td>
<td>Tratamento de Águas Residuárias</td>
<td>4</td>
<td>60</td>
<td>Sistemas de Esgotamento Sanitário</td>
</tr>
<tr>
<td>ESA.0024</td>
<td>Gestão e Controle das Emissões Atmosféricas</td>
<td>4</td>
<td>60</td>
<td>Poluição Ambiental II</td>
</tr>
<tr>
<td>ESA.0026</td>
<td>Gestão de Resíduos Sólidos</td>
<td>4</td>
<td>60</td>
<td>Poluição Ambiental II</td>
</tr>
<tr>
<td>ESA.0025</td>
<td>Estudos de Impacto Ambiental</td>
<td>4</td>
<td>60</td>
<td>Poluição Ambiental II</td>
</tr>
<tr>
<td>ESA.0023</td>
<td>Sistemas de Gestão Ambiental</td>
<td>4</td>
<td>60</td>
<td>Estratégias de Sustentabilidade para Organizações Produtivas, Engenharia Econômica</td>
</tr>
<tr>
<td></td>
<td>Total no semestre</td>
<td>26</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Disciplina</td>
<td>9º Período</td>
<td>Requisitos</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ESA.0056</td>
<td>Projeto de Final de Curso I</td>
<td>4</td>
<td>60 2820 horas em disciplinas obrigatórias</td>
<td></td>
</tr>
<tr>
<td>ESA.0028</td>
<td>Projeto de Sistemas de Abastecimento de Água</td>
<td>4</td>
<td>60 Tratamento de Águas para Abastecimento</td>
<td></td>
</tr>
<tr>
<td>ESA.0029</td>
<td>Projeto de Sistemas de Esgotamento Sanitário</td>
<td>4</td>
<td>60 Tratamento de Águas Resíduárias</td>
<td></td>
</tr>
<tr>
<td>ESA.0031</td>
<td>Sistemas de Tratamento de Resíduos Sólidos</td>
<td>4</td>
<td>60 Gestão de Resíduos Sólidos</td>
<td></td>
</tr>
<tr>
<td>ESA.0030</td>
<td>Manejo e Recuperação de Áreas Degradadas</td>
<td>4</td>
<td>60 Estudos de Impacto Ambiental</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disciplinas optativas</td>
<td>4</td>
<td>60 Conforme as disciplinas</td>
<td></td>
</tr>
<tr>
<td>ESA.0011</td>
<td>Administração, Empreendedorismo e Inovação</td>
<td>4</td>
<td>60 Sistemas de Gestão Ambiental</td>
<td></td>
</tr>
<tr>
<td>Total no semestre</td>
<td></td>
<td>28</td>
<td>420</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Disciplina</th>
<th>Cr</th>
<th>CH</th>
<th>Requisitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA.0057</td>
<td>Projeto de Final de Curso II</td>
<td>4</td>
<td>60</td>
<td>Projeto de Final de Curso I</td>
</tr>
<tr>
<td>ESA.0058</td>
<td>Estágio Supervisionado</td>
<td>12</td>
<td>160</td>
<td>1680 horas em disciplinas obrigatórias</td>
</tr>
<tr>
<td>Total no semestre</td>
<td></td>
<td>18</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Disciplina</th>
<th>Cr</th>
<th>CH</th>
<th>Documentação exigida</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>Disciplinas Obrigatórias</td>
<td>218</td>
<td>3270</td>
<td>Conforme as disciplinas</td>
</tr>
<tr>
<td>--</td>
<td>Disciplinas Optativas</td>
<td>18</td>
<td>270</td>
<td>Conforme as disciplinas</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>236</td>
<td>3540</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Disciplina</th>
<th>Cr</th>
<th>CH</th>
<th>Documentação exigida</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Seminários Acadêmicos</td>
<td>-</td>
<td>10</td>
<td>Participação</td>
</tr>
<tr>
<td>-</td>
<td>Atividades Complementares</td>
<td>-</td>
<td>40</td>
<td>Conforme tabela de conversão</td>
</tr>
<tr>
<td>-</td>
<td>Unidade Curricular de Extensão</td>
<td>430</td>
<td></td>
<td>Conforme regulamentação institucional.</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>-</td>
<td>480</td>
<td></td>
</tr>
</tbody>
</table>

As disciplinas obrigatórias e optativas mencionadas nos Quadros 2 e Figura 3 são discriminadas conforme a matéria específica e área da engenharia a qual são vinculadas, sendo estas escrutinadas nos Quadro 4. A carga-horário total de disciplinas optativas será de cumprimento obrigatório pelo estudante, embora seja facultada a escolha das disciplinas a serem integralizadas, desde que cumpridos os pré-requisitos necessários à sua matrícula em cada uma delas.
A totalidade das disciplinas complementares disponíveis para o estudante é acrescida de quaisquer disciplinas optativas oferecidas em sistema de créditos/pré-requisitos pelo campus no qual ele estiver matriculado, algumas destas disciplinas são relacionadas no Anexo II, seguido pela lista de ementas e programas de cada uma das disciplinas, obrigatórias e optativas, nos Anexos III a VIII.

As disciplinas optativas mencionadas no Quadro 4 são discriminadas conforme a matéria específica e área da engenharia a qual são vinculadas, sendo estas detalhadas no Quadro 5.

A carga horária de disciplinas optativas, de no mínimo 270 h, será de cumprimento obrigatório pelo estudante. Este mínimo de 270h em disciplinas optativas deverá contemplar apenas as disciplinas da unidade profissionalizante e específica, embora seja facultada a escolha das disciplinas a serem integralizadas, desde que cumpridos os pré-requisitos necessários à sua matrícula em cada uma delas, bem como o período em que serão cursadas, respeitados os requisitos previstos para cada disciplina. A relação de pré-requisitos das disciplinas optativas é discriminada no Anexo II.

O rol de disciplinas eletivas é composto pelas disciplinas apresentadas no Quadro 6, a totalidade das disciplinas complementares disponíveis para o estudante é acrescida de quaisquer disciplinas eletivas oferecidas em sistema de créditos/pré-requisitos pelo campus no qual ele estiver matriculado.

Quadro 5 – Disciplinas optativas ofertadas para o Curso de Engenharia Sanitária e Ambiental

<table>
<thead>
<tr>
<th>CÓDIGO</th>
<th>DESCRIÇÃO DAS DISCIPLINAS OPTATIVAS</th>
<th>NÚMERO DE AULAS SEMANAL</th>
<th>CARGA-HORÁRIA TOTAL</th>
<th>PRÉ-REQUISITO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disciplinas da Unidade Básica</td>
<td></td>
<td>Hora aula</td>
<td>Hora relógio</td>
</tr>
<tr>
<td>ENG.0112</td>
<td>Óptica</td>
<td>4</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>ENG.0113</td>
<td>Ondas</td>
<td>2</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>ENG.0114</td>
<td>Lógica Matemática</td>
<td>4</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>ENG.0117</td>
<td>Sociologia do Trabalho</td>
<td>2</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>ENG.0118</td>
<td>Inglês Técnico e Instrumental</td>
<td>2</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>ENG.0119</td>
<td>Psicologia das Relações de Trabalho</td>
<td>2</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>ENG.0120</td>
<td>Qualidade de Vida e Trabalho</td>
<td>2</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>ENG.0121</td>
<td>LIBRAS</td>
<td>2</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>ESA.0040</td>
<td>Introdução à Gestão Pública</td>
<td>4</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>ESA.0041</td>
<td>Fundamentos de Contabilidade</td>
<td>4</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>ESA.0042</td>
<td>Sistemas de Informação na Gestão Pública</td>
<td>4</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>ESA.0043</td>
<td>Ética no Serviço Público</td>
<td>2</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>ESA.0044</td>
<td>Marketing Ambiental</td>
<td>2</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>GETIN.S001</td>
<td>Eletro-Eletrônica Básica</td>
<td>4</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

Sub-total 14 disciplinas
6.2 Seminários curriculares

Os seminários curriculares constituem um conjunto de estratégias didático-pedagógicas que permitem, no âmbito do currículo, a articulação entre teoria e prática e a complementação dos saberes e das habilidades necessários, a serem desenvolvidos durante o período da formação do estudante. São caracterizados, quando a natureza da atividade assim o justificar, como atividades de orientação individual ou como atividades especiais coletivas.

Os componentes curriculares referentes aos seminários curriculares têm a função de proporcionar espaços de acolhimento, integração e orientação às atividades de desenvolvimento de projetos, pesquisas e orientação à prática profissional. O Quadro 6, apresenta os seminários a serem realizados, relacionando ações e objetivos dessas atividades.

Quadro 6 – Seminários Curriculares do Curso de Engenharia Sanitária e Ambiental

<table>
<thead>
<tr>
<th>SEMINÁRIOS CURRICULARES</th>
<th>ESPAÇOS E AÇÕES CORRESPONDENTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminário de Integração Acadêmica</td>
<td>Acolhimento e integração dos estudantes</td>
</tr>
<tr>
<td>Seminário de orientação ao Projeto Final de Curso</td>
<td>Orientação ao Projeto Final de Curso</td>
</tr>
<tr>
<td>Seminário de Orientação ao Estágio Supervisionado obrigatório</td>
<td>Acompanhamento de estágio curricular supervisionado</td>
</tr>
</tbody>
</table>

Fonte: Comissão de Elaboração do PPC de Engenharia Sanitária e Ambiental (2019).

6.3 Unidade curricular de extensão (UCE)

A Resolução nº 7, de 18 de dezembro de 2018, estabelece as Diretrizes para a Extensão na Educação Superior Brasileira, define os princípios, os fundamentos e os procedimentos que devem ser observados no planejamento, nas políticas, na gestão e na avaliação das instituições de educação superior.

Deste modo A Extensão na Educação Superior Brasileira é a atividade que se integra à
matriz curricular e à organização da pesquisa, constituindo-se em processo interdisciplinar, político educacional, cultural, científico, tecnológico, que promove a interação transformadora entre as instituições de ensino superior e os outros setores da sociedade, por meio da produção e da aplicação do conhecimento, em articulação permanente com o ensino e a pesquisa.

De acordo com esta resolução as atividades de extensão devem compor, no mínimo, 10% (dez por cento) do total da carga horária curricular estudantil dos cursos de graduação, as quais deverão fazer parte da matriz curricular dos cursos;

Para o curso de graduação em Engenharia Sanitária e Ambiental o cumprimento desta carga horária ocorrerá da seguinte forma:

1. Os estudantes cursarão a disciplina “Introdução às atividades de extensão (ESA.0055)”, pré-requisito para que o estudante esteja apto a desenvolver as demais atividades da UCE, itens (2) e (3) a seguir, a partir do 3º período do curso.

2. Orientação ao desenvolvimento de Projetos de Extensão.

3. Realizar as atividades extensionistas que se inserem nas seguintes modalidades:

 I. programas;
 II. projetos;
 III. cursos e oficinas;
 IV. eventos;
 V. prestação de serviços.

As modalidades a serem executadas ficam a critério das demandas do curso, porém, fica estabelecido um limite de contabilização máxima de 100 horas para a modalidade de eventos para cada estudante.

Todas as modalidades, obrigatoriamente, deverão ser caracterizadas como atividades de extensão, conforme normas estabelecidas na Resolução nº 7/2018 e na Resolução nº58/2017-CONSUP, que regulamenta as atividades de extensão no âmbito do IFRN e devidamente registradas em módulo próprio do SUAP.

O acompanhamento das atividades da UCE deve ser feito por um docente do quadro de servidores do IFRN, em exercício no campus do orientando por meio de reuniões e/ou relatórios parciais ou finais.

Para a contabilização das atividades de extensão, o estudante deverá solicitar, por meio de requerimento à Coordenação do Curso, a validação das atividades desenvolvidas com os respectivos documentos comprobatórios. A validação das atividades deverá ser feita por banca composta pelo Coordenador do Curso, como presidente, e por, no mínimo, dois
docentes do curso. Somente poderá ser contabilizado as atividades que forem realizadas no decorrer do período em que o aluno estiver vinculado ao Curso. A pontuação acumulada em horas será contabilizada dentro do cumprimento das horas de atividades previstas na Unidade Curricular de Extensão (UCE).

6.4 PRÁTICA PROFISSIONAL

A prática profissional proposta pelo IFRN para o curso de Engenharia Sanitária e Ambiental rege-se pelos princípios da equidade (oportunidade igual a todos), diversidade (mais de uma modalidade de prática profissional), aprendizado continuado com articulação entre teoria e prática e acompanhamento total ao estudante (orientação em todo o período de seu desenvolvimento).

A prática profissional compreende:

- Participação nos grupos de pesquisa, extensão, atuação no NEPP, empresas juniores, no PET1 e outras formas de Atividades complementares.
- Desenvolvimento de projetos em engenharia, de pesquisa e/ou extensão.
- O estágio curricular supervisionado obrigatório.

As atividades da prática profissional somarão uma carga horária mínima de 320 horas e serão realizadas por meio do Estágio Curricular Supervisionado obrigatório (160 horas), Projeto Final de Curso (120 horas) e Atividades Complementares (40 horas), objetivando a integração entre teoria e prática, com base na interdisciplinaridade, e resultando em documentos específicos de registro de cada atividade pelo estudante, sob o acompanhamento e supervisão de um orientador. Dessa maneira, a prática profissional constitui-se em atividades articuladoras entre o ensino, a pesquisa e a extensão, balizadores de uma formação articulada, universal e integral de sujeitos para atuar no mundo em constantes mudanças e desafios. Constitui-se, portanto, condição obrigatória para o graduando obter o Diploma de Engenheiro.

O mecanismo de planejamento, acompanhamento e avaliação das atividades da prática profissional é composto pelos seguintes itens:

- matrícula ativa e frequência regular do discente no curso de Engenharia Sanitária e Ambiental do IFRN;
- plano de atividades da prática profissional deferido pelo professor orientador e coordenação de curso, conforme modelo estabelecido pelo IFRN;
- apresentação da(s) documentação(ões) comprobatória(s) conforme modalidade(s) de prática profissional a ser(em) desenvolvida(s);

1 O Programa de Educação Tutorial é vinculado ao MEC e caracteriza-se pelo desenvolvimento de atividades fundamentadas na tríade do ensino-pesquisa-extensão.
• reuniões periódicas do estudante com o orientador;
• visita(s) periódica(s) do orientador ao local de realização, em caso de estágio;
• elaboração do documento específico de registro da atividade pelo estudante;
• produção de relatório técnico para análise e aprovação pelo professor orientador em caso de atividades de pesquisa, extensão ou monitoria/tutoria;
• defesa pública do trabalho pelo estudante perante banca, em caso de projetos finais de cursos;
• elaboração de relatório técnico para análise e aprovação pelo professor orientador e, em caso de estágio curricular supervisionado obrigatório.

A avaliação do relatório de estágio curricular supervisionado se dará por meio da atribuição de uma pontuação entre 0 (zero) e 100 (cem), e o estudante será aprovado com, no mínimo, 60 (sessenta) pontos.

O cômputo de atividades complementares não contará como atribuição de pontuação específica, sendo condição suficiente o cumprimento da carga-horária mínima prevista neste documento.

6.4.1 Núcleo de extensão e prática profissional/NEPP

Alinhado com as diretrizes apontadas na Resolução nº 7, de 18 de dezembro de 2018, o Núcleo de Extensão e Prática Profissional (NEPP) é um projeto, com o intuito de suprir as demandas de extensão e prática profissional, na área da engenharia sanitária e ambiental para os alunos do IFRN.

De acordo com o Projeto Político Pedagógico do IFRN, o NEPP, além de proporcionar a prática profissional aos alunos da Diretoria Acadêmica de Recursos Naturais (DIAREN), também oferece serviços técnicos e de extensão na área de gestão ambiental, tratamento de águas e efluentes, sistemas de gestão ambiental, de forma gratuita, à comunidade carente, instituições filantrópicas, além de servidores e alunos do Instituto.

No NEPP o discente poderá cumprir parte de sua prática profissional, por meio do desenvolvimento de projetos de Engenharia Sanitária e Ambiental, estágio curricular supervisionado e Atividades complementares previstas no currículo.

O fazer pedagógico da área de Recursos Naturais e do próprio IFRN, por meio da articulação entre os diversos níveis de formação profissional e do Núcleo de Extensão e Prática Profissional (NEPP) visa superar o isolamento ciência/tecnologia e teoria/prática, atuar na pesquisa como princípio educativo e científico e desenvolver ações de extensão como forma de diálogo permanente com a sociedade. Tal postura, revela uma decisão de romper com um formato convencionado, por séculos, de lidar com o conhecimento de forma fragmentada.
6.4.2 Estágio curricular supervisionado

O estágio curricular supervisionado é um conjunto de atividades de formação, realizadas sob a supervisão de docentes da instituição formadora, e acompanhado por profissionais, em que o estudante experimenta situações de efetivo exercício profissional, tendo como objetivo de consolidar e articular os conhecimentos desenvolvidos durante o curso por meio das atividades formativas de natureza teórica e/ou prática.

Nos cursos de engenharia, o estágio curricular supervisionado caracteriza-se como prática profissional obrigatória. O estágio curricular supervisionado é considerado uma etapa educativa importante para consolidar os conhecimentos específicos e tem por objetivos:

- possibilitar ao estudante o exercício da prática profissional, aliando a teoria à prática, como parte integrante de sua formação;
- facilitar o ingresso do estudante no mundo do trabalho; e
- promover a integração do IFRN com a sociedade em geral e o mundo do trabalho.

O estágio curricular supervisionado obrigatório poderá ser realizado a partir do 7º período do curso, após integralizada toda a carga-horária de disciplinas relativas até os seis períodos iniciais do curso, obedecendo às normas instituídas pelo IFRN. O estágio não obrigatório deve atender as normativas da instituição que tratam do tema.

O acompanhamento do estágio será realizado por um supervisor técnico da empresa/instituição na qual o estudante desenvolve o estágio, mediante acompanhamento in loco das atividades realizadas e, por um professor orientador, lastreado nos relatórios periódicos de responsabilidade do estagiário, em encontros periódicos com o estagiário, contatos com o supervisor técnico e, visita ao local do estágio, sendo necessária, no mínimo, uma visita por semestre, para cada estudante orientado.

As atividades programadas para o estágio devem manter uma correspondência com os conhecimentos teórico-práticos adquiridos pelo aluno no decorrer do curso.

O estágio, enquanto componente curricular de caráter obrigatório à integralização das atividades do currículo do curso de Engenharia Sanitária e Ambiental, deverá manter, em suas atividades programadas, uma correspondência com os conhecimentos teórico-práticos adquiridos pelo estudante no decorrer do curso. No período de realização do estágio, o aluno terá momentos em sala de aula com o seu professor orientador, no qual receberá orientações e relatará sobre o dia a dia do trabalho em curso.

Ao final do estágio curricular obrigatório (e somente nesse período), o estudante deverá apresentar um relatório técnico que será analisado e avaliado pelo professor orientador e o supervisor do estagiário.
6.4.3 Atividades Complementares

Complementando as atividades necessárias para a integralização do currículo e da prática profissional, o aluno deverá cumprir um total de **40 horas** (contabilizadas para fins de integralização curricular) em outras formas de atividades complementares, reconhecidas pelo Colegiado de Curso. Essas atividades devem envolver ensino, pesquisa e extensão, com respectivas cargas horárias previstas no Quadro 7.

Quadro 7 - Distribuição de carga horária de atividades complementares.

<table>
<thead>
<tr>
<th>Atividade</th>
<th>Horas por atividade*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participação em conferências, palestras, congressos, seminários ou outros eventos acadêmico-artístico-culturais, na área do curso ou afim</td>
<td>Conforme certificação ou 4h por turno</td>
</tr>
<tr>
<td>Participação em curso na área de formação ou afim</td>
<td>Carga horária constante no certificado</td>
</tr>
<tr>
<td>Exposição ou publicação de trabalhos em eventos regionais na área do curso ou afim</td>
<td>15h</td>
</tr>
<tr>
<td>Exposição ou publicação de trabalhos em eventos nacionais na área do curso ou afim</td>
<td>20h</td>
</tr>
<tr>
<td>Exposição ou publicação de trabalhos em eventos internacionais na área do curso ou afim</td>
<td>25h</td>
</tr>
<tr>
<td>Exposição ou publicação de trabalhos em eventos regionais na área do curso ou afim</td>
<td>15h</td>
</tr>
<tr>
<td>Exposição ou publicação de trabalhos em eventos internacionais na área do curso ou afim</td>
<td>20h</td>
</tr>
<tr>
<td>Exposição ou publicação de trabalhos em eventos internacionais na área do curso ou afim</td>
<td>25h</td>
</tr>
<tr>
<td>Exposição ou publicação de trabalhos em eventos internacionais na área do curso ou afim</td>
<td>25h</td>
</tr>
<tr>
<td>Publicações de trabalhos em revistas ou periódicos com ISSN na área do curso ou afim</td>
<td>20h</td>
</tr>
<tr>
<td>Publicações de trabalhos em revistas ou periódicos com ISSN na área do curso ou afim</td>
<td>20h</td>
</tr>
<tr>
<td>Coautoria de capítulos de livros com ISBN na área do curso ou afim</td>
<td>50h</td>
</tr>
<tr>
<td>Participação em projeto de pesquisa (como bolsista ou voluntário) na área do curso ou afim</td>
<td>25h por projeto semestral ou 50h por projeto anual</td>
</tr>
<tr>
<td>Participação em projeto de ensino (como bolsista ou voluntário) na área do curso ou afim</td>
<td>25h por projeto semestral ou 50h por projeto anual</td>
</tr>
<tr>
<td>Desenvolvimento de tutoria/monitoria (como bolsista ou voluntário) na área do curso ou afim</td>
<td>25h (como bolsista ou voluntário por semestre)</td>
</tr>
<tr>
<td>Participação na organização de eventos acadêmico-científicos na área do curso ou afim</td>
<td>10h</td>
</tr>
<tr>
<td>Realização de estágio não obrigatório na área do curso ou afim (carga horária total mínima de 50 horas)</td>
<td>25h por estágio semestral ou 50h por estágio anual</td>
</tr>
<tr>
<td>Participação em Colegiados/Representação Estudantil e outras representações</td>
<td>5h por comissão/Representação por semestre</td>
</tr>
</tbody>
</table>

*Caso o certificado do evento não apresente a carga-horária, será considerada a carga horária de 4h por turno.

Para a contabilização das atividades complementares, o estudante deverá solicitar, por meio de requerimento à Coordenação do Curso, a validação das atividades desenvolvidas com os respectivos documentos comprobatórios. A validação das atividades deverá ser feita por banca composta pelo Coordenador do Curso, como presidente, e por, no mínimo, dois docentes do curso. Cada documento apresentado só poderá ser contabilizado uma única vez e
somente poderão ser contabilizadas as atividades que forem realizadas no decorrer do período em que o aluno estiver vinculado ao Curso. A pontuação acumulada em horas será contabilizada dentro do cumprimento da prática profissional, correspondendo às horas de atividades previstas no quadro acima.

No caso de participação em programas de Tutoria, Pesquisa e/ou Extensão, será obrigatória a apresentação de um relatório de atividades semestral, devidamente aprovado pelo professor orientador e pela banca instituída, para validação da pontuação pretendida.

6.5 PROJETO FINAL DE CURSO

Para os cursos superiores de Engenharia, o Projeto Final de Curso será realizado na forma de um documento acadêmico, o qual se configura em componente curricular obrigatório para a obtenção do título de Engenheiro, e no Curso de Engenharia Sanitária e Ambiental. Projeto Final de Curso pode ser materializado através de um artigo científico publicado em periódico indexado nas bases ISI/ICR ou Qualis A ou B em área afim. O PFC poderá ser realizado individualmente ou em equipe, sendo que, em qualquer situação, deve permitir avaliar a efetiva contribuição de cada aluno, bem como sua capacidade de articulação das competências visadas.

O Projeto Final de Curso será elaborado nos últimos períodos do curso, conforme o Quadro 2, e será necessariamente orientado por um professor do curso. O aluno poderá matricular-se no Projeto Final de Curso a partir do momento em que tiver integralizado pelo menos 2850 horas em disciplinas obrigatórias. O mecanismo de planejamento, acompanhamento e avaliação do PFC é composto pelos seguintes itens:

- elaboração de um plano de atividades, aprovado pelo professor orientador;
- reuniões periódicas do aluno com o professor orientador;
- elaboração da produção monográfica pelo estudante;
- submissão para publicação em periódico indexado pela CAPES – Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (somente para os artigos científicos);
- avaliação e defesa pública do trabalho perante uma banca examinadora.

O PFC será apresentado a uma banca examinadora composta pelo professor orientador e mais dois componentes, podendo ser convidado, para compor essa banca, um profissional externo de reconhecida experiência profissional na área de desenvolvimento do objeto de estudo.

A avaliação do PFC terá em vista os critérios de: domínio do conteúdo; linguagem (adequação, clareza); postura; interação; nível de participação e envolvimento; e material didático (recursos utilizados e roteiro de apresentação).
Sera atribuida ao PFC uma pontuação entre 0 (zero) e 100 (cem) e o estudante será aprovado com, no mínimo, 60 (sessenta) pontos. Caso o estudante não alcance a nota mínima de aprovação no TCC, deverá ser reorientado com o fim de realizar as necessárias adequações/correções e submeter novamente o trabalho à aprovação.

Em caso de publicação de artigo científico, a aceitação de publicação do trabalho consistirá de requisito suficiente para a integralização do PFC.

6.6 DIRETRIZES CURRICULARES E PROCEDIMENTOS PEDAGÓGICOS

Este projeto pedagógico de curso deve ser o norteador do currículo no curso de Engenharia Sanitária e Ambiental, na modalidade presencial. Caracteriza-se, portanto, como expressão coletiva, devendo ser avaliado periódica e sistematicamente pela comunidade escolar, apoiados por uma comissão avaliadora com competência para a referida prática pedagógica. Qualquer alteração deve ser vista sempre que se verificar, mediante avaliações sistemáticas anuais, defasagem entre perfil de conclusão do curso, objetivos e organização curricular frente às exigências decorrentes das transformações científicas, tecnológicas, sociais e culturais. Entretanto, as possíveis alterações poderão ser efetivadas mediante solicitação aos conselhos competentes.

Os princípios pedagógicos, filosóficos e legais que subsidiam a organização, definidos neste projeto pedagógico de curso, nos quais a relação teoria-prática é o princípio fundamental associado à estrutura curricular do curso, conduzem a um fazer pedagógico, em que atividades como práticas interdisciplinares, seminários, oficinas, visitas técnicas e desenvolvimento de projetos, entre outros, estão presentes durante os períodos letivos.

O trabalho coletivo entre os grupos de professores da mesma base de conhecimento e entre os professores de base científica e da base tecnológica é imprescindível à construção do currículo integrado, resultando na construção e apreensão dos conhecimentos pelos estudantes numa perspectiva do pensamento relacional. Para tanto, os professores deverão desenvolver aulas de campo, atividades experimentais, projetos e práticas coletivas juntamente com os estudantes. Para essas atividades, os professores têm, à disposição, horários para encontros ou reuniões de grupo, destinados a um planejamento antecipado e acompanhamento sistemático.

Considera-se a aprendizagem como processo de construção de conhecimento, em que partindo dos conhecimentos prévios dos alunos, os professores assumem um fundamental papel de mediação, idealizando estratégias de ensino de maneira que a partir da articulação entre o conhecimento do senso comum e o conhecimento escolar, o aluno possa desenvolver suas percepções e convicções acerca dos processos sociais e de trabalho, construindo-se como
pessoas e profissionais com responsabilidade ética, técnica e política em todos os contextos de atuação.

Da mesma forma, abre-se espaço para uma maior adoção de tecnologias digitais, que permitem o uso de modelos como sala de aula invertida (aluno estudando previamente o tema da aula a partir de ferramentas online), laboratório rotacional (revezamento de grupos de estudantes em atividades em sala de aula e em laboratórios) e rotação individual (estudante possui lista específica de atividades para serem executadas online a partir de suas necessidades). Ou ainda o envolvimento dos estudantes em atividades e espaços ambientados para imersão no contexto de inovação.

Neste sentido, a avaliação da aprendizagem assume dimensões mais amplas, ultrapassando a perspectiva da mera aplicação de provas e testes para assumir uma prática diagnóstica e processual com ênfase nos aspectos qualitativos.

6.6.1 Inclusão e diversidade

Na viabilização de um projeto pedagógico de curso que proponha a reflexão da inclusão e da diversidade, é mister que se aponte com fundamento o diálogo no qual ressalta a inclusão social como o processo pelo qual a sociedade se adapta para incluir as pessoas até então marginalizadas. Este Projeto Pedagógico do Curso contempla, além das atividades que se relacionem diretamente à formação na habilitação ou na ênfase do curso, as formas transversais de tratamento dos conteúdos que a legislação vigente exige, tais como: a educação para a terceira idade; a educação em políticas de gênero; a educação das relações étnico-raciais e a história e cultura afro-brasileira, africana e indígena, entre outras.

Para tal fim é basilar a formação de educadores que promova a reflexão objetivando a sensibilização e o conhecimento da importância da participação dos sujeitos para a vida em sociedade. O IFRN, assim, cumprindo a regulamentação das Políticas de Inclusão (Dec. N° 5.296/2004) e da legislação relativa às questões étnico raciais (Leis 10.639/03 e 11.645/08; Resolução CNE/CP N° 01 de 17 de junho de 2004, e Parecer CNE/CES N° 01 de 23 de janeiro de 2019) atende a essas demandas a partir da inserção dos núcleos abaixo expostos:

6.6.2 Núcleo de Atendimento às Pessoas com Necessidades Específicas/NAPNE

O Núcleo de Atendimento às Pessoas com Necessidades Específicas/NAPNE subsidia o IFRN nas ações e estudos voltados à inclusão de estudantes com dificuldades na aprendizagem advindas de fatores diversos, a exemplo das altas habilidades, disfunções neurológicas, problemas emocionais, limitações físicas e ausência total e/ou parcial de um ou mais sentidos da audição e/ou visão.
O NAPNE tem as suas atividades voltadas, sobretudo, para o incentivo à formação docente na perspectiva da inclusão. Seus objetivos preveem: promover as condições necessárias para o ingresso e permanência de alunos com necessidades específicas; propor e acompanhar ações de eliminação de barreiras arquitetônicas, possibilitando o acesso a todos os espaços físicos da instituição, conforme as normas da NBR/9050, ou sua eventual substituta; atuar junto aos colegiados dos cursos, oferecendo suporte no processo de ensino-aprendizagem dos discentes; potencializar o processo ensino-aprendizagem por meio de orientação dos recursos de novas tecnologias assistidas, inclusive mediando projetos de inovação tecnológica assistida desenvolvidos por discentes e docentes; promover e participar de estudos, discussões e debates sobre Educação Inclusiva e Educação Especial; contribuir para a inserção da pessoa com deficiência nos demais níveis de ensino, no mundo do trabalho e nos demais espaços sociais; assessorar os processos seletivos para ingresso de pessoas com necessidades específicas; incentivar a implantação de conteúdos, disciplinas permanentes e/ou optativas referentes à Educação Especial, nos cursos ofertados pelo IFRN; e articular as atividades desenvolvidas pelo NAPNE com as ações de outras Instituições voltadas ao trabalho com pessoas com deficiência.

6.6.3 Núcleo de Estudos Afro-Brasileiros e Indígenas/NEABI

O Núcleo de Estudos Afro-Brasileiros e Indígenas/NEABI do IFRN é um grupo de trabalho responsável por fomentar ações, de natureza sistêmica, no âmbito do ensino, pesquisa e extensão, que promovam o cumprimento efetivo das Leis nº. 10.639/2003 e 11.645/2008 e os demais instrumentos legais correlatos. O NEABI tem como finalidades: propor, fomentar e realizar ações de ensino, pesquisa, extensão sobre as várias dimensões das relações étnico-raciais; sensibilizar e reunir pesquisadores, professores, técnico-administrativos, estudantes, representantes de entidades afins e demais interessados na temática das relações étnico-raciais; colaborar e promover, por meio de parcerias, ações estratégicas no âmbito da formação inicial e continuada dos profissionais do Sistema de Educação do Rio Grande do Norte; contribuir para a ampliação do debate e da abrangência das políticas de ações afirmativas e de promoção da igualdade racial e; produzir e divulgar conhecimentos sobre relações étnico-raciais junto às instituições educacionais, sociedade civil organizada e população em geral.

6.7 INDICADORES METODOLÓGICOS

Neste PPC, a metodologia é entendida como um conjunto de procedimentos empregados com o fim de atingir os objetivos propostos para a formação do engenheiro,
assegurando a formação integral dos estudantes. Para a sua concretude, é recomendado considerar as características específicas dos alunos, seus interesses, condições de vida e de trabalho, além de observar os seus conhecimentos prévios, orientando-os na (re) construção dos conhecimentos escolares, bem como na especificidade do curso.

O estudante vive as incertezas próprias do atual contexto histórico, das condições sociais, psicológicas e biológicas. Em razão disso, faz-se necessária à adoção de procedimentos didático-pedagógicos, que possam auxiliá-los nas suas construções intelectuais, procedimentais e atitudinais, tais como:

- problematizar o conhecimento, buscando confirmação em diferentes fontes;
- reconhecer a tendência ao erro e à ilusão;
- entender a totalidade como uma síntese das múltiplas relações que o homem estabelece na sociedade;
- reconhecer a existência de uma identidade comum do ser humano, sem esquecer-se de considerar os diferentes ritmos de aprendizagens e a subjetividade do aluno;
- adotar a pesquisa como um princípio educativo;
- articular e integrar os conhecimentos das diferentes áreas sem sobreposição de saberes;
- adotar atitude interdisciplinar nas práticas educativas;
- contextualizar os conhecimentos sistematizados, valorizando as experiências dos alunos, sem perder de vista a (re)construção do saber escolar;
- organizar um ambiente educativo que articule múltiplas atividades voltadas às diversas dimensões de formação dos estudantes, favorecendo a construção e reconstrução de conhecimentos;
- diagnosticar as necessidades de aprendizagem dos (as) estudantes a partir do levantamento dos seus conhecimentos prévios;
- elaborar e executar o planejamento, registro e análise das aulas realizadas;
- utilizar recursos tecnológicos para subsidiar as atividades pedagógicas;
- sistematizar coletivos pedagógicos que possibilitem os estudantes e professores refletir, repensar e tomar decisões referentes ao processo ensino-aprendizagem de forma significativa; e
- ministrar aulas interativas, por meio do desenvolvimento de projetos, seminários, debates, atividades individuais e outras atividades em grupo.
7. PROCEDIMENTOS DE AVALIAÇÃO DO ENSINO E APRENDIZAGEM

A proposta pedagógica do curso prevê uma avaliação contínua e cumulativa, assumindo, de forma integrada no processo ensino-aprendizagem, as funções diagnóstica, formativa e somativa, que devem ser utilizadas como princípios para a tomada de consciência das dificuldades, conquistas e possibilidades e que funcione como instrumento colaborador na verificação da aprendizagem, levando em consideração o predomínio dos aspectos qualitativos sobre os quantitativos.

Nessa perspectiva, a avaliação dá significado ao trabalho discente e docente e à relação professor-estudante, como ação transformadora e de promoção social em que todos devem ter direito a aprender, refletindo a sua concepção de sociedade, de educação, de ser humano e de cultura.

Avalia-se, portanto, para constatar os conhecimentos dos alunos em nível conceitual, procedimental e atitudinal, para detectar erros, corrigi-los, não se buscando simplesmente registrar desempenho insatisfatório ao final do processo. Avaliar está relacionado com a busca de uma aprendizagem significativa para quem aprende e também para atender às necessidades do contexto atual.

Para tanto, o aluno deve saber o que será trabalhado em ambientes de aprendizagem, os objetivos para o estudo de temas e de conteúdos, e as estratégias que são necessárias para que possa superar as dificuldades apresentadas no processo.

Assim, essa avaliação tem como função priorizar a qualidade e o processo de aprendizagem, isto é, o desempenho do aluno ao longo do período letivo, não se restringindo apenas a uma prova ou trabalho, conforme orienta a LDB em vigor.

Nesse sentido, a avaliação será desenvolvida numa perspectiva processual e contínua, buscando a reconstrução e construção do conhecimento e o desenvolvimento de hábitos e atitudes coerentes com a formação de engenheiros-cidadãos.

Nessa perspectiva, é de suma importância que o professor utilize instrumentos diversificados os quais lhe possibilitem observar melhor o desempenho do aluno nas atividades desenvolvidas e tomar decisões, tal como reorientar o aluno no processo diante das dificuldades de aprendizagem apresentadas, exercendo o seu papel de orientador que reflete na ação e que age. Considerando a heterogeneidade entre os ingressantes no curso de engenharia sanitária e ambiental, tanto cultural quanto de formação prévia, torna-se crucial a implementação de programas de acolhimento para os ingressantes. Esses programas devem contemplar o nivelamento de conhecimentos, o atendimento psicopedagógico, o sistema de monitorias, os centros de aprendizagens, além de outros, que possam influir no desempenho.
dos estudantes no curso.

Assim sendo, a avaliação deverá permitir ao docente identificar os elementos indispensáveis à análise dos diferentes aspectos do desenvolvimento do aluno e do planejamento do trabalho pedagógico realizado. É, pois, uma concepção que implica numa avaliação que deverá acontecer de forma contínua e sistemática mediante interpretações qualitativas dos conhecimentos construídos e reconstruídos pelos alunos no desenvolvimento de suas capacidades, atitudes e habilidades.

A proposta pedagógica do curso prevê atividades avaliativas que funcionem como instrumentos colaboradores na verificação da aprendizagem, contemplando os seguintes aspectos:

- adoção de procedimentos de avaliação contínua e cumulativa;
- prevalência dos aspectos qualitativos sobre os quantitativos;
- inclusão de atividades contextualizadas;
- manutenção de diálogo permanente com o aluno;
- consenso dos critérios de avaliação a serem adotados e cumprimento do estabelecido;
- disponibilização de apoio pedagógico para aqueles que têm dificuldades;
- adoção de estratégias cognitivas e metacognitivas como aspectos a serem considerados nas avaliações;
- adoção de procedimentos didático-pedagógicos visando à melhoria contínua da aprendizagem;
- discussão, em sala de aula, dos resultados obtidos pelos estudantes nas atividades desenvolvidas; e
- observação das características dos alunos, seus conhecimentos prévios integrando-os aos saberes sistematizados do curso, consolidando o perfil do trabalhador-cidadão, com vistas à (re) construção do saber escolar.

A avaliação do desempenho escolar é feita por disciplinas e bimestres, considerando aspectos de assiduidade e aproveitamento, conforme as diretrizes da LDB, Lei noº. 9.394/96. A assiduidade diz respeito à frequência às aulas teóricas, aos trabalhos escolares, aos exercícios de aplicação e atividades práticas. O aproveitamento escolar é avaliado através de acompanhamento contínuo dos estudantes e dos resultados por eles obtidos nas atividades avaliativas.

O desempenho acadêmico dos estudantes por disciplina e em cada bimestre letivo, obtido a partir dos processos de avaliação, será expresso por uma nota, na escala de 0 (zero) a 100 (cem). Será considerado aprovado na disciplina o estudante que, ao final do 2º bimestre,
não for reprovado por falta e obtiver média aritmética ponderada igual ou superior a 60 (sessenta), de acordo com a seguinte equação:

$$\text{MD} = \frac{2N_1 + 3N_2}{5}$$

na qual:
- MD = média da disciplina
- N1 = nota do estudante no 1º bimestre
- N2 = nota do estudante no 2º bimestre

O estudante que não for reprovado por falta e obtiver média igual ou superior a 20 (vinte) e inferior a 60 (sessenta) terá direito a submeter-se a uma avaliação final em cada disciplina, em prazo definido no calendário acadêmico do Campus de vinculação do estudante. Será considerado aprovado, após avaliação final, o estudante que obtiver média final igual ou maior que 60 (sessenta), de acordo com as seguintes equações:

$$\text{MD} = \frac{2N_1 + 3N_2}{5}$$

na qual:
- MD = média da disciplina
- N1 = nota do estudante no 1º bimestre
- N2 = nota do estudante no 2º bimestre

$$\text{MFD} = \frac{\text{MD} + \text{NAF}}{2}, \text{ ou }$$

$$\text{MFD} = \frac{2\text{NAF} + 3N_2}{5}, \text{ ou } \text{MFD} = \frac{2N_1 + 3\text{NAF}}{5}$$

nas quais
- MFD = média final da disciplina
- MD = média da disciplina
- NAF = nota da avaliação final
- N1 = nota do estudante no 1º bimestre
- N2 = nota do estudante no 2º bimestre

Será considerado reprovado por falta o estudante que não obtiver frequência mínima de 75% (setenta e cinco por cento) da carga horária total de cada disciplina cursada, independentemente da média final.

Os critérios de verificação do desempenho acadêmico dos estudantes são tratados pela Organização Didática do IFRN.
8. CRITÉRIOS DE AVALIAÇÃO DO PROJETO PEDAGÓGICO DO CURSO

A avaliação do Projeto Pedagógico do Curso (PPC) deve ser realizada anualmente, tendo por referência os resultados da Avaliação Institucional e da Avaliação das Condições de Ensino, e as constatações das visitas in loco a serem realizadas por componentes do Núcleo Central Estruturante (NCE) vinculado ao curso, em conjunto com o Núcleo Docente Estruturante (NDE) do curso em cada campus.

O NCE constitui-se num órgão de assessoramento, vinculado à Diretoria de Avaliação e Regulação do Ensino da Pró-Reitoria de Ensino, sendo composto por comissão permanente de especialistas, assessores aos processos de criação, implantação, consolidação e avaliação de cursos na área de sua competência. Nessa perspectiva, a atuação do NCE tem como objetivo geral garantir a unidade da ação pedagógica e do desenvolvimento do currículo no IFRN, com vistas a manter um padrão de qualidade do ensino, em acordo com o Projeto Político-Pedagógico Institucional e o Projeto Pedagógico de Curso.

Por outro lado, o NDE constitui-se como órgão consultivo e de assessoramento, vinculado ao Colegiado de Curso, constituído de um grupo de docentes que exercem liderança acadêmica, percebida no desenvolvimento do ensino, na produção de conhecimentos na área e em outras dimensões entendidas como importantes pela instituição, e que atuem sobre o desenvolvimento do curso.

A avaliação e eventuais correções de rumos necessárias ao desenvolvimento do Projeto Pedagógico de Curso deverão ser definidas a partir dos critérios expostos a seguir:

a) Justificativa do curso – deve observar a pertinência no âmbito de abrangência, destacando: a demanda da região, com elementos que sustentem a criação e manutenção do curso; o desenvolvimento econômico da região, que justifiquem a criação e manutenção do curso; a descrição da população da educação básica local; a oferta já existente de outras instituições de ensino da região; a política institucional de expansão que abrigue a oferta e/ou manutenção do curso; a vinculação com o PPP e o PDI do IFRN.

b) Objetivos do curso – devem expressar a função social e os compromissos institucionais de formação humana e tecnológica, bem como as demandas da região e as necessidades emergentes no âmbito da formação docente para a educação básica.

c) Perfil profissional do egresso – deve expressar as competências profissionais do egresso do curso.
d) Número de vagas ofertadas – deve corresponder à dimensão (quantitativa) do corpo docente e às condições de infraestrutura no âmbito do curso.

e) Estrutura curricular – deve apresentar flexibilidade, interdisciplinaridade, atualização com o mundo do trabalho e articulação da teoria com a prática.

f) Conteúdos curriculares – devem possibilitar o desenvolvimento do perfil profissional, considerando os aspectos de competências do egresso e de cargas horárias.

g) Práticas do curso – devem estar comprometidas com a interdisciplinaridade, a contextualização, com o desenvolvimento do espírito crítico-científico e com a formação de sujeitos autônomos e cidadãos.

h) Programas sistemáticos de atendimento ao discente – devem considerar os aspectos de atendimento extracurricular, apoio psicopedagógico e atividades de nivelamento.

i) Pesquisa e inovação tecnológica – deve contemplar a participação do discente e as condições para desenvolvimento de atividades de pesquisa e inovação tecnológica.

9. APROVEITAMENTO DE ESTUDOS E CERTIFICAÇÃO DE CONHECIMENTOS

No âmbito deste projeto pedagógico de curso, compreende-se o aproveitamento de estudos como a possibilidade de aproveitamento de disciplinas estudadas em outro curso superior de graduação; e a certificação de conhecimentos como a possibilidade de certificação de saberes adquiridos através de experiências previamente vivenciadas, inclusive fora do ambiente escolar, com o fim de alcançar a dispensa de disciplinas integrantes da matriz curricular do curso, por meio de uma avaliação teórica ou teórica - prática, conforme as características da disciplina.

Os aspectos operacionais relativos ao aproveitamento de estudos e à certificação de conhecimentos, adquiridos através de experiências vivenciadas previamente ao início do curso, são tratados pela Organização Didática do IFRN.

10. INSTALAÇÕES E EQUIPAMENTOS

O curso superior de Engenharia Sanitária e Ambiental possui uma infraestrutura física suficiente para o desenvolvimento de suas atividades. Todos os ambientes atendem aos critérios mínimos de iluminação, além de proporcionarem conforto térmico-acústico aos usuários, tendo todos os espaços devidamente refrigerados, bem como acomodações confortáveis e eficientes para o cotidiano escolar.
10.1 Ambientes de uso geral

Entende-se por uso geral espaços que atendem não apenas os alunos do curso superior de Engenharia Sanitária e Ambiental, mas também demais alunos da instituição, tendo em vista que eles serão ocupados pelas atividades exclusivas do curso de forma esporádica. O Quadro 8 apresenta a estrutura física desses ambientes.
Quadro 8 – Descrição dos ambientes de uso geral do curso de Engenharia Sanitária e Ambiental

<table>
<thead>
<tr>
<th>AMBIENTE</th>
<th>DESCRIÇÃO</th>
<th>QUANTIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALA DE AULA</td>
<td>Espaço de desenvolvimento das disciplinas teóricas, comporta, adequadamente, um mínimo de 40 alunos, e disponibiliza computador com acesso a internet e projetor de mídias.</td>
<td>10</td>
</tr>
<tr>
<td>SALA DE AUDIOVISUAL</td>
<td>Espaço com capacidade mínima de 40 alunos, para atender as necessidades de reprodução de mídias e dispositivos de armazenamento de dados. Conta com projetor multimídia.</td>
<td>01</td>
</tr>
<tr>
<td>AUDITORIO</td>
<td>Espaço com capacidade mínima para 100 pessoas, com disponibilidade de equipamentos equivalente a sala de audiovisual, acrescenta-se sistema de som e iluminação para</td>
<td>01</td>
</tr>
<tr>
<td>BIBLIOTECA</td>
<td>Espaço disponível à comunidade acadêmica, com material bibliográfico e midiático. Sistema informatizado de busca e acesso ao acervo da biblioteca. Acervo dividido por áreas de conhecimento, com exemplares de livros e periódicos que contemplam todas as áreas de abrangência do curso. Serviços de empréstimo, orientação na normalização de trabalhos acadêmicos, orientação bibliográfica e visitas orientadas.</td>
<td>01</td>
</tr>
<tr>
<td>TOTAL DE AMBIENTES DE USO GERAL</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

10.2 Ambientes de uso específico

Esses ambientes são de utilização específica e exclusiva das atividades do curso Engenharia Sanitária e Ambiental, pois seu acesso e utilização será de forma contínua, ao longo das atividades do curso. O Quadro 9 apresenta a estrutura existente e disponível ao funcionamento do curso.

Quadro 9 – Descrição dos ambientes de uso específico do curso de Engenharia Sanitária e Ambiental

<table>
<thead>
<tr>
<th>AMBIENTE</th>
<th>DESCRIÇÃO</th>
<th>QUANTIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALA DE COORDENACAO</td>
<td>Espaço destinado às atividades de coordenação da Diretoria Acadêmica, com dimensões adequadas, possui os equipamentos necessários para o desenvolvimento de suas atividades (impressora, computador, telefone, armários), além de espaço para coordenador, e destinado aos demais funcionários, e para atendimento individual aos alunos e aos professores.</td>
<td>01</td>
</tr>
<tr>
<td>SALA DE PROFESSORES</td>
<td>Ambiente exclusivo para os professores atuantes na Diretoria Acadêmica responsável pela oferta do curso de Engenharia Sanitária e Ambiental, apresenta disponibilidade de equipamentos, limpeza, iluminação, acústica, ventilação e acessibilidade.</td>
<td>01</td>
</tr>
<tr>
<td>Total de Ambientes de Uso Específico</td>
<td></td>
<td>02</td>
</tr>
</tbody>
</table>

10.3 LABORATÓRIOS

Para o desenvolvimento das atividades experimentais o Curso de Engenharia Sanitária e Ambiental utilizará principalmente 9 laboratórios, dos quais 7 fazem parte na
Diretoria de Recursos Naturais e 2 da Diretoria da Construção Civil. Os laboratórios possuem área e capacidade adequadas para acomodar, cada um, pelo menos 40 alunos e um posto de trabalho para o professor, composto por mesa, cadeira e quadro branco. Cada um desses laboratórios, excetuando-se o de Informática, conta com bancadas para práticas experimentais, armários e equipamentos didáticos.

Cada laboratório possui algumas especificidades, tornando-os únicos e indispensáveis ao funcionamento do curso. Todos os laboratórios possuem, além dos itens de segurança convencionais, luzes de emergência, entradas/saída adequadas e extintores de incêndio.

10.3.1 Laboratórios de Informática

Esse laboratório possui bancadas apropriadas para alocação de computadores; 40 computadores de mesa dispostos adequadamente sobre as bancadas; softwares de uso geral e específico das disciplinas do curso para dar suporte às aulas de programação, desenho assistido por computador e todas as demais com tópicos associados à modelagem ambiental. Também possui um Nobreak no qual todos eles devem estar conectados. Além de um computador para uso do professor conectado a um projetor multimídia.

10.3.2 Laboratórios de Geoprocessamento

Esse laboratório possui bancadas apropriadas para alocação de 40 computadores de mesa dispostos adequadamente sobre as bancadas; softwares de uso geral e específico para as disciplinas na área de Também conta com um Nobreak no qual todos eles devem estar conectados. Além de um computador para uso do professor conectado a um projetor multimídia.

10.3.3 Laboratórios de Análises Físicas e Químicas

Este laboratório possui diversos equipamentos para análises físicas e químicas de águas e efluentes. Comportando simultaneamente o atendimento de 40 alunos. Também é equipado com todos os dispositivos, equipamentos e sinalização de segurança.

10.3.4 Laboratório de Microbiologia Sanitária e Ambiental

Este laboratório possui diversos equipamentos para análises microbiológicas de águas, efluentes líquidos, sólidos e gasosos. Comportando simultaneamente o atendimento de 40 alunos. Também está equipado com todos os dispositivos, equipamentos e sinalização de segurança.
10.3.5 Laboratório de Pesquisa Ambiental

Este laboratório possui diversos equipamentos para análises genéricas aplicadas aos diversos tipo de ambientes com destaque aos equipamentos de monitoramento da qualidade do ar que, de acordo com a prática a ser executada são instalados no setor externo do prédio da DIAREN. A finalidade do laboratório de Pesquisa Ambiental é dar suporte às atividades de pesquisa desenvolvidas por alunos do curso de Engenharia Sanitária e Ambiental, com supervisão e orientação do corpo docente. Comportando simultaneamente o atendimento de 40 alunos. Está equipado também com todos os dispositivos, equipamentos e sinalização de segurança.

10.3.6 Laboratório de Análise de Solos

Este laboratório possui diversos pontos de ligação elétrica, e pontos de entrada de tubulações de água, devem também comportar um total de postos de trabalho adequado para acomodar 40 alunos com ação voltada especificamente para as disciplinas, pesquisas e ações relacionadas ao controle dos processos de poluição do solo.

10.3.7 Laboratório de Ecotoxicologia

Este laboratório possui diversos pontos de ligação elétrica e pontos de entrada de tubulações de água, além de equipamentos e instrumentação adequada. Comporta um total de postos de trabalho adequado para acomodar 40 alunos. O laboratório tem foco principal na análise de toxicidade em efluentes e corpos hídricos.

10.3.8 Laboratório de Instalações Hidrossanitárias e Hidráulica Geral

O Laboratório de Instalações Hidrossanitárias possibilita, considerando conhecimentos teóricos previamente obtidos em sala de aula, a execução de instalações residenciais e prediais de água fria (soldável e roscável), instalações de esgoto e instalações de água quente, atendendo às normas técnicas vigentes e às boas práticas relacionadas. Deve ser dotado de bancadas com torno fixo com bancos altos, boxes didáticos que se assemelhem ao ambiente de trabalho, armário para armazenamento de ferramentas e utensílios, armário para armazenamento de conexões, armário guarda-volumes, suporte para tubos de PVC, instalação hidrossanitária com alimentação e compreendendo: 01 caixas d’águas com 100 l, 02 bombas hidráulicas, barrilete, e materiais existentes na instalação de um banheiro e de uma área de serviço e quadro branco móvel. O laboratório de Hidráulica Geral é composto por circuito fechado de água, bancadas didáticas de tubulação fechada dupla e escoamento
aberto. Esse equipamento faz parte da Diretoria de Construção Civil e tem condições de acomodar adequadamente 40 alunos.

10.3.9 Laboratório de Instalações Elétricas

Esse laboratório possui uma bancada apropriada para separação e teste em componentes elétricos que serão utilizados na montagem de circuitos de baixa tensão, possui boxes para simulação de ambientes internos das edificações como salas, quartos, ambientes molhados e outros; 06 kits básicos de ferramentas (alicate universal, alicates de bico e de corte, chaves de fenda e Philips, e outros), utilizados pelos alunos em trabalhos práticos nesse ambiente; armários com capacidade compatível que possa acondicionar os diversos equipamentos, materiais e kits de trabalho (voltímetros, amperímetros, fios diversas bitolas e cores, terminais e conectores, caixas de ferramentas, dentre outros) especial atenção ao piso que deverá ser, de preferência, do tipo emborrachado a fim de mitigar os efeitos de condução de corrente elétrica; o ambiente possui ventilação e circulação de ar satisfatórios ou ser climatizada; instalação elétrica adequada para utilização dos alunos quando em aulas práticas, dotada de dispositivos de segurança contra fuga de corrente elétrica, do tipo disjuntores DRs, além de estrutura de apoio às aulas expositivas com quadro branco, data show, mesa tipo bureau com cadeira para uso dos professores mais um computador com acesso à internet. Esse equipamento faz parte da Diretoria de Construção Civil e tem condições de acomodar adequadamente 25 alunos por vez.

11. BIBLIOTECA

A Biblioteca opera com um sistema completamente informatizado, possibilitando fácil acesso via terminal ao seu acervo.

O acervo está dividido por áreas de conhecimento, facilitando, assim, a procura por títulos específicos, com exemplares de livros e periódicos, contemplando todas as áreas de abrangência do curso. Oferece serviços de empréstimo, renovação e reserva de material, consultasinformatizadas a bases de dados e ao acervo, orientação na normalização de trabalhos acadêmicos, orientação bibliográfica e visitas orientadas.

O acervo está disponível para consulta e empréstimo, numa proporção de 6 (seis) alunos por exemplar, no mínimo, 3 (três) dos títulos constantes na bibliografia básica das disciplinas que compõem o curso, com uma média de 5 (cinco) exemplares por título.

A listagem com o acervo bibliográfico básico necessário ao desenvolvimento do curso é apresentada, para cada uma das disciplinas anteriormente listadas, no seu respectivo programa de disciplina, os quais são disponibilizados nos Anexos III a X.
12. PERFIL DO PESSOAL DOCENTE E TÉCNICO-ADMINISTRATIVO

Os Quadros 10 e 11 descrevem, respectivamente, o pessoal docente e técnico-administrativo, disponível ao funcionamento do Curso, tomando por base o desenvolvimento simultâneo de uma turma para cada período do curso.

Quadro 10 – Pessoal docente necessário ao funcionamento do curso

<table>
<thead>
<tr>
<th>DESCRIÇÃO</th>
<th>Qtde.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núcleo Fundamental</td>
<td></td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com licenciatura em Biologia</td>
<td>01</td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com licenciatura em Química</td>
<td>01</td>
</tr>
<tr>
<td>Núcleo Científico e Tecnológico</td>
<td></td>
</tr>
<tr>
<td>Unidade Básica</td>
<td></td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com graduação na área de Engenharia Civil/Sanitária/Ambiental/Produção/Química/Engenharia Química/Gestão Ambiental/Engenharia Elétrica</td>
<td>05</td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com licenciatura em Informática ou área afim</td>
<td>01</td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com licenciatura em Matemática</td>
<td>03</td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com licenciatura em Física</td>
<td>01</td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com licenciatura em Biologia</td>
<td>01</td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com graduação na área de Administração ou área afim</td>
<td>01</td>
</tr>
<tr>
<td>Unidade Profissionalizante</td>
<td></td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com graduação na área de Biologia</td>
<td>01</td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com graduação na área de Engenharia Civil/Sanitária/Ambiental/Produção/Química/Engenharia Química/Gestão Ambiental</td>
<td>05</td>
</tr>
<tr>
<td>Unidade Específica</td>
<td></td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com graduação na área de Biologia</td>
<td>01</td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com graduação na área Segurança do Trabalho</td>
<td>01</td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com graduação na área de Geologia</td>
<td>02</td>
</tr>
<tr>
<td>Professor com pós-graduação lato ou stricto sensu e com graduação na área de Engenharia Civil/Sanitária/Ambiental/Produção/Química/Engenharia Química/Gestão Ambiental</td>
<td>06</td>
</tr>
<tr>
<td>TOTAL DE PROFESSORES</td>
<td>30</td>
</tr>
</tbody>
</table>
Quadro 11 – Pessoal técnico-administrativo necessário ao funcionamento do curso.

<table>
<thead>
<tr>
<th>DESCRIÇÃO</th>
<th>Qtde.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoio Técnico</td>
<td></td>
</tr>
<tr>
<td>Profissional de nível superior na área de Pedagogia, para assessoria técnica ao coordenador de curso e professores, no que diz respeito às políticas educacionais da Instituição, e acompanhamento didático-pedagógico do processo de ensino aprendizagem.</td>
<td>03</td>
</tr>
<tr>
<td>Profissional de nível superior na área de Meio Ambiente, Saneamento, Controle Ambiental para assessorar e coordenar as atividades dos laboratórios de específicos do Curso.</td>
<td>01</td>
</tr>
<tr>
<td>Profissional técnico de nível médio/intermediário na área de Meio Ambiente para manter, organizar e definir demandas dos laboratórios específicos do Curso.</td>
<td>01</td>
</tr>
<tr>
<td>Profissional técnico de nível médio/intermediário na área de ciências para manter, organizar e definir demandas dos laboratórios de apoio ao Curso.</td>
<td>01</td>
</tr>
<tr>
<td>Profissional técnico de nível médio/intermediário na área de Informática para manter, organizar e definir demandas dos laboratórios de apoio ao Curso.</td>
<td>01</td>
</tr>
<tr>
<td>Apoio Administrativo</td>
<td></td>
</tr>
<tr>
<td>Profissional de nível médio/intermediário para prover a organização e o apoio administrativo da secretaria do Curso.</td>
<td>01</td>
</tr>
<tr>
<td>TOTAL DE TÉCNICOS-ADMINISTRATIVOS</td>
<td>08</td>
</tr>
</tbody>
</table>

Além disso, é necessária a existência um professor Coordenador de Curso, com pós-graduação stricto sensu e com graduação na área de afim do curso, responsável pela organização, decisões, encaminhamentos e acompanhamento do curso.

13. CERTIFICADOS E DIPLOMAS

Após a integralização dos componentes curriculares que compõem o Curso Superior de Engenharia Sanitária e Ambiental e da realização da correspondente Prática Profissional, será conferido ao estudante o Diploma de Engenheiro Sanitarista e Ambiental.

14. REFERÊNCIAS

BRASIL. Decreto nº 5.296, de 02 de dezembro de 2004. Regulamenta as Leis nº. 10.048, de 8
de novembro de 2000, que dá prioridade de atendimento às pessoas que especifica, e 10.098,
de 19 de dezembro de 2000, que estabelece normas gerais e critérios básicos para a promoção
da acessibilidade das pessoas portadoras de deficiência ou com mobilidade reduzida, e dá

ensino superior e a avaliação de cursos e instituições;

BRASIL. Decreto nº 5.154/2004. Regulamenta o § 2º do art. 36 e os arts. 39 a 41 da Lei nº.
9.394, de 20 de dezembro de 1996, que estabelece as diretrizes e bases da educação nacional,

BRASIL. Lei nº 10.639, de 9 de janeiro de 2003. Altera a Lei nº 9.394, de 20 de dezembro de
1996, que estabelece as diretrizes e bases da educação nacional, para incluir no currículo
oficial da Rede de Ensino a obrigatoriedade da temática "História e Cultura Afro-Brasileira", e
dá outras providências. Brasília/DF.

(SINAES) e dá outras providências.

BRASIL. Lei nº 11.645, de 10 março de 2008. Altera a Lei no 9.394, de 20 de dezembro de
1996, modificada pela Lei no 10.639, de 9 de janeiro de 2003, que estabelece as diretrizes e
bases da educação nacional, para incluir no currículo oficial da rede de ensino a
obrigatoriedade da temática “História e Cultura Afro-Brasileira e Indígena. Brasília/DF.

BRASIL. Lei nº 11.892/2008. Institui a Rede Federal de Educação Profissional, Científica e
Tecnológica, cria os Institutos Federais de Educação, Ciência e Tecnologia e dá outras

BRASIL. Lei nº 13.146, de 6 de julho de 2015. Institui a Lei Brasileira de Inclusão da Pessoa com

BRASIL. Lei nº 5.194, de 24 dezembro de 1966. Regula o exercício das profissões de

BRASIL. Parecer CNE/CES nº 1 de 23 de janeiro de 2019. Diretrizes Curriculares Nacionais do

BRASIL. Parecer CNE/CES nº 8 de 31 de janeiro de 2007. Dispõe sobre carga horária mínima e
procedimentos relativos à integralização e duração dos cursos de graduação, bacharelados, na

BRASIL. Resolução CONFEA nº 447/2000. Dispõe sobre o registro profissional do Engenheiro

BRASIL. Resolução CNE/CES nº 2, de 24 de abril de 2019. Institui as Diretrizes Curriculares

BRASIL. Resolução CNE/CES nº 7, de 18 de dezembro de 2018. Estabelece as Diretrizes para a
Extensão na Educação Superior Brasileira e reglementa o disposto na Meta 12.7 da Lei nº
13.005/2014, que aprova o Plano Nacional de Educação - PNE 2014-2024 e dá outras

BRASIL. Resolução CNE/CP nº 1, de 17 de junho de 2004. Institui Diretrizes Curriculares
Nacionais para a Educação das Relações Étnico-Raciais e para o Ensino de História e Cultura

ANEXO I – DESCRIÇÃO DAS INSTALAÇÕES E EQUIPAMENTOS

De acordo com as orientações contidas definidas pelo Ministério da Educação, a instituição ofertante, deverá cumprir um conjunto de exigências que são necessárias ao desenvolvimento curricular para a formação profissional com vistas a atingir um padrão mínimo de qualidade. O Quadro 11 a seguir apresenta a estrutura física necessária ao funcionamento do Curso Superior de Engenharia Sanitária e Ambiental. Os Quadros 12 a 20 apresentam a relação detalhada dos laboratórios específicos da Diretoria Acadêmica de Recursos Naturais.

Quadro 12 – Quantificação e descrição das instalações disponíveis para o funcionamento do curso.

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>ESPAÇO FÍSICO</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>Salas de Aula</td>
<td>Com 40 carteiras, condicionador de ar, disponibilidade para utilização de computador e projetor multimídia.</td>
</tr>
<tr>
<td>01</td>
<td>Sala de Audiovisual ou Projeções</td>
<td>Com 60 cadeiras, projetor multimídia, computador, televisor e DVD player.</td>
</tr>
<tr>
<td>01</td>
<td>Sala de videoconferênci</td>
<td>Com 40 cadeiras, equipamento de videoconferência, computador e televisor.</td>
</tr>
<tr>
<td>01</td>
<td>Auditório</td>
<td>Com 100 lugares, projetor multimídia, computador, sistema de caixas acústicas e microfones.</td>
</tr>
<tr>
<td>01</td>
<td>Biblioteca</td>
<td>Com espaço de estudos individual e em grupo, acervo bibliográfico e de multimídia específicos.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Informática</td>
<td>Com 40 máquinas, softwares e projetor multimídia.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Línguas estrangeiras</td>
<td>Com 40 carteiras, projetor multimídia, computador, televisor, DVD player e equipamento de som amplificado.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Biologia</td>
<td>Com bancadas de trabalho, equipamentos e materiais específicos.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Química</td>
<td>Com bancadas de trabalho, equipamentos e materiais específicos.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Física</td>
<td>Com bancadas de trabalho, equipamentos e materiais específicos.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Matemática</td>
<td>Com bancadas de trabalho, equipamentos e materiais específicos.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Geoprocessamento</td>
<td>Com 40 máquinas, softwares e projetor multimídia.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Análises Físicas e Químicas</td>
<td>Com bancadas de trabalho, equipamentos e materiais específicos.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório Microbiologia Sanitária e Ambiental</td>
<td>Com bancadas de trabalho, equipamentos e materiais específicos.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório Balneabilidade</td>
<td>Com bancadas de trabalho, equipamentos e materiais específicos.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Ecotoxicologia</td>
<td>Com bancadas de trabalho, equipamentos e materiais específicos.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Pesquisa Ambiental</td>
<td>Com bancadas de trabalho, equipamentos e materiais específicos.</td>
</tr>
<tr>
<td>01</td>
<td>Laboratório de Análises de Solo</td>
<td>Com bancadas de trabalho, equipamentos e materiais específicos.</td>
</tr>
</tbody>
</table>
Quadro 13 – Equipamentos para o laboratório de Análises Físicas e Químicas

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>Descrição e especificações (materiais, ferramentas, equipamentos, hardwares e softwares instalados, e/ou outros dados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Medidor de pH microprocessador, de bancada.</td>
</tr>
<tr>
<td>01</td>
<td>Medidor de condutividade e salinidade microprocessador de bancada.</td>
</tr>
<tr>
<td>01</td>
<td>Fotômetro de chama.</td>
</tr>
<tr>
<td>01</td>
<td>Capela de exaustão de gases.</td>
</tr>
<tr>
<td>01</td>
<td>Chapa aquecedora microprocessador</td>
</tr>
<tr>
<td>01</td>
<td>Destilador de nitrogênio.</td>
</tr>
<tr>
<td>01</td>
<td>Destilador de água tipo pilsen.</td>
</tr>
<tr>
<td>02</td>
<td>Espectrofotômetro colorimétrico visível</td>
</tr>
<tr>
<td>01</td>
<td>Estufa de secagem e esterilização.</td>
</tr>
<tr>
<td>01</td>
<td>Medidor de cor digital microprocessador.</td>
</tr>
<tr>
<td>01</td>
<td>Medidor de turbidez digital micro processado.</td>
</tr>
<tr>
<td>01</td>
<td>Compressor / aspirador</td>
</tr>
<tr>
<td>01</td>
<td>Balança analítica digital.</td>
</tr>
<tr>
<td>01</td>
<td>Agitador magnético.</td>
</tr>
<tr>
<td>02</td>
<td>Estufa de BOD micro processada.</td>
</tr>
<tr>
<td>01</td>
<td>Reator de DQO.</td>
</tr>
<tr>
<td>01</td>
<td>Refrigerador vertical.</td>
</tr>
</tbody>
</table>

Equipamentos

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>Descrição e especificações (materiais, ferramentas, equipamentos, hardwares e softwares instalados, e/ou outros dados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Aparelho de ar condicionado</td>
</tr>
<tr>
<td>01</td>
<td>Nobreak para 40 computadores,</td>
</tr>
<tr>
<td>40</td>
<td>Mesas para computador,</td>
</tr>
<tr>
<td>40</td>
<td>Cadeiras,</td>
</tr>
<tr>
<td>40</td>
<td>Computadores</td>
</tr>
<tr>
<td>01</td>
<td>Projetor multimídia,</td>
</tr>
<tr>
<td>40</td>
<td>Pacotes de softwares Autodesk,</td>
</tr>
<tr>
<td>40</td>
<td>Software Volare – Orçamento e Planejamento</td>
</tr>
<tr>
<td>40</td>
<td>COMPUTADORES COM SOFTWARE WINDOWS E PACOTE OFFICE</td>
</tr>
</tbody>
</table>
Quadro 15 – Equipamentos para o laboratório de Geoprocessamento

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>Descrição e especificações (materiais, ferramentas, equipamentos, hardwares e softwares instalados, e/ou outros dados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Aparelho de ar condicionado</td>
</tr>
<tr>
<td>01</td>
<td>Nobreak para 40 computadores,</td>
</tr>
<tr>
<td>40</td>
<td>Mesas para computador,</td>
</tr>
<tr>
<td>40</td>
<td>Cadeiras,</td>
</tr>
<tr>
<td>40</td>
<td>Computadores</td>
</tr>
<tr>
<td>01</td>
<td>Projetor multimídia,</td>
</tr>
<tr>
<td>40</td>
<td>Pacotes de softwares Autodesk,</td>
</tr>
<tr>
<td>40</td>
<td>Software Arcgis – Geoprocessamento</td>
</tr>
<tr>
<td>40</td>
<td>COMPUTADORES COM SOFTWARE WINDOWS E PACOTE OFFICE</td>
</tr>
</tbody>
</table>

Quadro 16 – Equipamentos para o laboratório de Pesquisas Ambientais

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>Descrição e especificações (materiais, ferramentas, equipamentos, hardwares e softwares instalados, e/ou outros dados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Medidor de pH microprocessador, de bancada.</td>
</tr>
<tr>
<td>01</td>
<td>Medidor de condutividade e salinidade microprocessador de bancada.</td>
</tr>
<tr>
<td>01</td>
<td>Fotômetro de chama.</td>
</tr>
<tr>
<td>01</td>
<td>Capela de exaustão de gases.</td>
</tr>
<tr>
<td>01</td>
<td>Chapa aquecedora microprocessador</td>
</tr>
<tr>
<td>01</td>
<td>Destilador de nitrogênio.</td>
</tr>
<tr>
<td>01</td>
<td>Destilador de água tipo Pilsen.</td>
</tr>
<tr>
<td>02</td>
<td>Espectrofotômetro colorimétrico visível</td>
</tr>
<tr>
<td>01</td>
<td>Estufa de secagem e esterilização.</td>
</tr>
<tr>
<td>02</td>
<td>Estufas para secagem de filtros</td>
</tr>
<tr>
<td>01</td>
<td>Amostrador de Grande Volume para Material Particulador</td>
</tr>
<tr>
<td>01</td>
<td>Amostrador de Grande Volume para Partículas Totais em Suspensão</td>
</tr>
<tr>
<td>01</td>
<td>Amostrador Trigás</td>
</tr>
<tr>
<td>01</td>
<td>Aparelho de jar test.</td>
</tr>
<tr>
<td>01</td>
<td>Compressor / aspirador</td>
</tr>
<tr>
<td>02</td>
<td>Estufa de BOD micro processada.</td>
</tr>
<tr>
<td>18</td>
<td>EQUIPAMENTOS</td>
</tr>
</tbody>
</table>
Quadro 17 – Equipamentos para o laboratório de Microbiologia Sanitária e Ambiental

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>Descrição e especificações (materiais, ferramentas, equipamentos, hardwares e softwares instalados, e/ou outros dados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Microscópio.</td>
</tr>
<tr>
<td>01</td>
<td>Câmara de fluxo laminar.</td>
</tr>
<tr>
<td>01</td>
<td>Lupa.</td>
</tr>
<tr>
<td>01</td>
<td>Estufa de secagem e esterilização.</td>
</tr>
<tr>
<td>02</td>
<td>Estufa de incubação microbiológica.</td>
</tr>
<tr>
<td>01</td>
<td>Compressor / aspirador.</td>
</tr>
<tr>
<td>02</td>
<td>Banho sorológico.</td>
</tr>
<tr>
<td>01</td>
<td>Seladora.</td>
</tr>
<tr>
<td>19</td>
<td>EQUIPAMENTOS</td>
</tr>
</tbody>
</table>

Quadro 18 – Equipamentos do laboratório de Ecotoxicologia

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>Descrição e especificações (materiais, ferramentas, equipamentos, hardwares e softwares instalados, e/ou outros dados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Microscópio.</td>
</tr>
<tr>
<td>01</td>
<td>Câmara de fluxo laminar.</td>
</tr>
<tr>
<td>01</td>
<td>Lupa.</td>
</tr>
<tr>
<td>01</td>
<td>Estufa de secagem e esterilização.</td>
</tr>
<tr>
<td>02</td>
<td>Estufa de incubação microbiológica.</td>
</tr>
<tr>
<td>01</td>
<td>Compressor / aspirador.</td>
</tr>
<tr>
<td>04</td>
<td>Autoclave vertical</td>
</tr>
<tr>
<td>01</td>
<td>Medidor de pH</td>
</tr>
<tr>
<td>01</td>
<td>Balança semi-analítica digital.</td>
</tr>
<tr>
<td>22</td>
<td>EQUIPAMENTOS</td>
</tr>
</tbody>
</table>
Quadro 19 – Equipamentos para o laboratório de Balneabilidade

<table>
<thead>
<tr>
<th>LABORATÓRIO: Balneabilidade</th>
<th>Área (m²)</th>
<th>Capacidade de atendimento (estudantes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>Descrição e especificações (materiais, ferramentas, equipamentos, hardwares e softwares instalados, e/ou outros dados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>Autoclave vertical</td>
</tr>
<tr>
<td>01</td>
<td>Medidor de pH</td>
</tr>
<tr>
<td>01</td>
<td>Balança semi-analítica digital.</td>
</tr>
<tr>
<td>01</td>
<td>Estufa de secagem e esterilização.</td>
</tr>
<tr>
<td>02</td>
<td>Estufa de incubação microbiológica.</td>
</tr>
<tr>
<td>01</td>
<td>Compressor / aspirador.</td>
</tr>
<tr>
<td>05</td>
<td>Banho sorológico.</td>
</tr>
<tr>
<td>01</td>
<td>Destilador de água tipo pilsen.</td>
</tr>
<tr>
<td>01</td>
<td>Medidor de condutividade elétrica.</td>
</tr>
<tr>
<td>01</td>
<td>Lâmpada ultravioleta.</td>
</tr>
<tr>
<td>01</td>
<td>Centrífuga.</td>
</tr>
</tbody>
</table>

19 EQUIPAMENTOS

Quadro 20 – Equipamentos do laboratório de Análises de Solos

<table>
<thead>
<tr>
<th>LABORATÓRIO: Análises de Solos</th>
<th>Área (m²)</th>
<th>Capacidade de atendimento (estudantes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>Descrição e especificações (materiais, ferramentas, equipamentos, hardwares e softwares instalados, e/ou outros dados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Medidor de pH micro processado, de bancada.</td>
</tr>
<tr>
<td>01</td>
<td>Medidor de condutividade e salinidade micro processado de bancada.</td>
</tr>
<tr>
<td>01</td>
<td>Espectrofotômetro de Absorção Atômica.</td>
</tr>
<tr>
<td>01</td>
<td>Sistema de purificação de água Mili-Q.</td>
</tr>
<tr>
<td>01</td>
<td>Destilador de água tipo Pilsen.</td>
</tr>
<tr>
<td>01</td>
<td>Espectrofotômetro colorimétrico visível.</td>
</tr>
<tr>
<td>01</td>
<td>Espectrofotômetro UV-VIS.</td>
</tr>
<tr>
<td>01</td>
<td>Compressor / aspirador.</td>
</tr>
<tr>
<td>01</td>
<td>Mufla.</td>
</tr>
<tr>
<td>01</td>
<td>Estufa.</td>
</tr>
</tbody>
</table>

10 EQUIPAMENTOS
Quadro 21 – Equipamentos do Laboratório de Instalações Hidrossanitárias e Hidráulica Geral.

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>Descrição e especificações (materiais, ferramentas, equipamentos, hardwares e softwares instalados, e/ou outros dados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Carteiras,</td>
</tr>
<tr>
<td>02</td>
<td>Mesas,</td>
</tr>
<tr>
<td>02</td>
<td>Estantes</td>
</tr>
<tr>
<td>03</td>
<td>Armários</td>
</tr>
<tr>
<td>04</td>
<td>Box didático</td>
</tr>
<tr>
<td>04</td>
<td>Kit com modelos hidráulicos diversos</td>
</tr>
</tbody>
</table>

Quadro 22 – Equipamentos do Laboratório de Instalações Elétricas.

<table>
<thead>
<tr>
<th>Qtde.</th>
<th>Descrição e especificações (materiais, ferramentas, equipamentos, hardwares e softwares instalados, e/ou outros dados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Bancada,</td>
</tr>
<tr>
<td>05</td>
<td>Cadeira,</td>
</tr>
<tr>
<td>05</td>
<td>Box didático</td>
</tr>
<tr>
<td>01</td>
<td>Armário,</td>
</tr>
<tr>
<td>05</td>
<td>Kit com modelos elétricos diversos</td>
</tr>
</tbody>
</table>

LABORATÓRIO: Instalações Hidrossanitárias e Hidráulica Geral

<table>
<thead>
<tr>
<th>Área (m²)</th>
<th>Capacidade de atendimento (estudantes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52,36</td>
<td>40</td>
</tr>
</tbody>
</table>

LABORATÓRIO: Instalações Elétricas

<table>
<thead>
<tr>
<th>Área (m²)</th>
<th>Capacidade de atendimento (estudantes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>58,37</td>
<td>25</td>
</tr>
</tbody>
</table>
ANEXO II – EMENTAS E PROGRAMAS DAS DISCIPLINAS OBRIGATÓRIAS

<table>
<thead>
<tr>
<th>Curso: Engenharia Sanitária e Ambiental Código: ESA.0002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplina: Introdução à Engenharia Sanitária e Ambiental Carga-Horária: 30h (40h/a)</td>
</tr>
<tr>
<td>Pré-Requisito(s): - Número de créditos 2</td>
</tr>
</tbody>
</table>

EMENTA
Histórico da Engenharia Sanitária e Ambiental; Engenharia Sanitária e Ambiental no contexto político, técnico e científico. Saneamento Básico e Ambiental; Importância do saneamento para a saúde humana e a preservação e conservação ambiental; Desenvolvimento Sustentável e Planejamento ambiental; Métodos Científicos; Projetos em Engenharia e Regulamentação profissional.

Dar ao estudante de engenharia sanitária e ambiental informação sobre a profissão; contextualizar a engenharia sanitária e ambiental nas relações sociais, ambientais e do mundo do trabalho; fornecer noções de redação e elaboração de pesquisas, projetos e apresentações públicas. Debater assuntos de interesse dos estudantes e profissionais da área de engenharia sanitária e ambiental.

Bases Científico-Tecnológicas (Conteúdos)
1. Tópicos em desenvolvimento acadêmico, ensino superior e estudos em engenharia sanitária e ambiental.
2. História da Engenharia
 2.1. Filosofia, ciência e tecnologia
 2.2. Primórdios do desenvolvimento tecnológico humano
 2.3. Surgimento da Engenharia Moderna
 2.4. Início da Engenharia no Brasil
3. O Engenheiro e a Engenharia
 3.1. O papel do engenheiro na sociedade
 3.2. As funções do Engenheiro
 3.3. O Engenheiro, o tecnólogo e o técnico
 3.4. Código de ética
4. Tópicos em Engenharia e suas relações com a academia, a ciência, a tecnologia, o trabalho, o mercado e a sociedade.
5. Tópicos em sobre a relação das atividades produtivas com o meio ambiente, os recursos naturais, o desenvolvimento tecnológico e a sociedade.
6. Projeto em engenharia sanitária e ambiental
 6.1. Modelos e Modelagem
 6.2. Simulação e experimentação
 6.3. Gerenciamento de Projetos
7. A profissão de Engenheiro Sanitarista e Ambiental
 7.1. Regulamento da profissão;
 7.2. Estrutura do sistema CONFEA/CREA;
 7.3. Atividades e atribuições profissionais do Engenheiro Sanitarista e Ambiental

Procedimentos Metodológicos
• Aulas dialogadas, leituras dirigidas, discussões, debates, palestras com convidados internos e externos à instituição.

Recursos Didáticos
• Quadro branco, pincel e projetor de multimídia

Avaliação
• Contínua por meio de atividades orais, seminários, debates, abordagem de problemas propostos, confecção de textos acadêmicos e de opinião (atividades individuais e em grupo)
<table>
<thead>
<tr>
<th>Bibliografia Básica</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bibliografia Complementar</th>
</tr>
</thead>
</table>
Curso: Engenharia Sanitária e Ambiental
Código: ENG.0003
Disciplina: Cálculo para Engenharia I
Carga-Horária: 90h (120h/a)
Pré-Requisito(s): -
Número de créditos: 6

EMENTA

PROGRAMA
Objetivos

- Compreender as funções e suas variáveis
- Abordar os conteúdos necessários para o aprendizado do cálculo;
- Familiarizar o aluno com os conceitos de limites e suas aplicações;
- Compreender os conceitos de limites e derivadas e os processos de cálculo de limites e derivação;
- Definir o coeficiente angular de uma curva como o limite dos coeficientes angulares das secantes;
- Entender a derivada como taxa de variação;
- Desenvolver técnicas para o cálculo de derivadas;
- Utilizar a derivada como um método de determinar os valores máximos e mínimos de uma função;
- Prever e analisar a forma de um gráfico;
- Concluir sobre o comportamento das funções;
- Calcular as integrais indefinidas;
- Calcular através de métodos de integração por substituição e por partes;
- Entender métodos de estimativas feitas com somas finitas;
- Aplicar o Cálculo aos problemas reais da vida profissional;
- Identificar os pontos onde o Cálculo pode auxiliar enquanto ferramenta para diversas ciências e engenharias;
- Conceituar e desenvolver aplicações práticas de derivadas e integrais;
- Habilitar ao uso de Instrumental matemático, enfatizando a aplicação nas soluções de problemas de ordem prática.
- Compreender o conceito e os processos de integração e suas aplicações;
- Desenvolver atitude científica;

Bases Científico-Tecnológicas (Conteúdos)

1. Limite e Continuidade
 1.1. Noção Intuitiva de Limites
 1.2. Definição Formal de Limites
 1.3. Cálculo de Limites e suas propriedades
 1.4. Teorema do Confronto
 1.5 Limites Laterais
 1.6. Limites no Infinito e limites infinitos; Comportamento de funções
 1.7. Limites Fundamentais
 1.8. Continuidade

2. A Derivada
 2.1. Noção intuitiva de derivada
 2.2. Retas Tangentes, Velocidades e Taxas de Variação
 2.3. Função Derivada
 2.4. Derivada d e Funções Elementares
 2.5. Técnicas de Derivação
2.6. Derivadas do Produto e do Quociente
2.7. Derivadas de Funções Trigonometricas
2.8. Funções compostas e Regra da Cadeia
2.9. Derivada da Função Inversa
2.10. Derivadas de ordem superior
2.11. Derivação implícita

3. Aplicações da Derivada
3.1. Crescimento, decrescimento e concavidade
3.2. Extremos Relativos
3.3. Máximos e Mínimos Absolutos
3.4. Concavidade
3.5. Construção de Gráficos
3.6. Teorema do Valor Médio (TVM)
3.7. Taxas Relacionadas
3.8. Problemas aplicados às diversas áreas
3.9. A regra de L’Hospital

4. Integração
4.1. O problema da Área
4.2. Integral Indefinida
4.3. Integração por Substituição
4.4. Integração por Partes
4.5. Integral Definida
4.6. Teorema Fundamental do Cálculo
4.7. Integração por Frações Parciais
4.8. Integração por Substituição trigonométrica

5. Aplicações da Integral
5.1. Área entre duas curvas
5.2. Cálculo de Volumes
5.3. Aplicações às diversas áreas

Procedimentos Metodológicos
- Aulas expositivas e práticas no computador utilizando softwares matemáticos.

Recursos Didáticos
- Quadro branco, pincel, projetor de multimídia, softwares matemáticos e computador.

Avaliação
- Provas escritas
- Atividades individuais e em grupo

Bibliografia Básica

Bibliografia Complementar
5. SIMMONS, G.F. **Cálculo com Geometria Analítica**; McGraw-Hill; v. 1.
<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>ESA. 0003</td>
</tr>
<tr>
<td>Disciplina:</td>
<td>Física Geral I</td>
</tr>
<tr>
<td>Carga-Horária:</td>
<td>60h (80h/a)</td>
</tr>
<tr>
<td>Pré-Requisito (s):</td>
<td></td>
</tr>
<tr>
<td>Número de créditos:</td>
<td>4</td>
</tr>
</tbody>
</table>

EMENTA
Segunda Lei de Newton e Aplicações, Princípio de Conservação de Energia, Sistemas de Partículas e Conservação do Momento, Dinâmica de um Corpo Rígido.

PROGRAMA
Objetivos
Fazer uma revisão das principais leis básicas da mecânica clássica dentro da formulação conceitual e matemática com o objetivo de interpretar fenômenos, prever situações e encontrar soluções adequadas para problemas aplicados a área ambiental e apresentar a parte experimental como reforço dos conceitos estudados.

Bases Científico-Tecnológicas (Conteúdos)

MÓDULO INTRODUTÓRIO: MEDIDAS
1. Grandezas, padrões e unidades físicas.
2. Sistema internacional de unidades.
3. Práticas experimentais

MÓDULO A: MECÂNICA
1. 2ª Lei de Newton e suas aplicações
 - Conceito de força, massa e peso
 - Aplicações da 2ª Lei de Newton
 - Equilíbrio de forças
2. Trabalho e potência
 - Conceito de trabalho
 - Trabalho realizado por uma força variável
 - Conceito de potência
3. Conservação de energia
 - Conceito de energia cinética
 - Conceito de energia potencial gravitacional
 - Conservação de energia
4. Práticas Experimentais aplicadas aos conceitos trabalhados

Procedimentos Metodológicos
- Aulas expositivas e dialogadas, com utilização de retro projetor, projetor multimídea e quadro, exercícios e seminários.

Recursos Didáticos
- Projetor de multimídia, quadro branco, filmes.

Avaliação
- O processo avaliativo ocorrerá de forma contínua (com reorientação das atividades no processo), estando os alunos avaliados com base nos seguintes critérios: participação quanto à realização de atividades e debates; assiduidade; responsabilidade quanto ao cumprimento do tempo previsto para realização das atividades e qualidade das atividades realizadas e avaliação escrita.

Bibliografia Básica

Bibliografia Complementar
Mc Graw Hill. 5ª Edição. 1990

Software(s) de Apoio:
Curso: Engenharia Sanitária e Ambiental
Código: CIV.0003

Disciplina: Desenho Técnico
Carga-Horária: 60h (80 h/a)

Pré-Requisito(s): -
Número de créditos: 4

EMENTA
Estudo das propriedades espaciais e geométricas das figuras planas. Desenvolvimento da habilidade de compreensão e representação da forma, dimensão e posição relativa dos elementos que compõem a linguagem gráfica universal da engenharia: o Desenho Técnico. Construção espacial representativa no plano de objetos tridimensionais segundo Normas Técnicas.

PROGRAMA

Objetivos
- Possibilitar a compreensão das propriedades espaciais e geométricas das figuras planas.
- Proporcionar conhecimento metodológico e normativo para construção e representação gráfica da forma, dimensão e posição relativa dos elementos do Desenho Técnico.
- Permitir a elaboração espacial representativa no plano de objetos tridimensionais.

Bases Científico-Tecnológicas (Conteúdos)

1. DESENHO GEOMÉTRICO
 1.1. Introdução: elementos fundamentais (ponto, reta, plano e sólido), classificação, simbologia, conceituação das relações de paralelismo e perpendicularismo.
 1.2. Ângulos: definição, nomenclatura, classificação, medição e construções gráficas.
 1.3. Polígonos: definição, constituição, classificação, nomenclatura.
 1.3.1. Triângulos: elementos, relações, classificação, determinação dos pontos notáveis.
 1.3.2. Quadriláteros: introdução, classificação e construções gráficas.
 1.4. Circunferências e círculos: conceituação, elementos fundamentais, posições relativas, divisão e construções gráficas.
 1.5. Tangentes: definição da propriedade de tangência, circunferências tangentes, reta tangente a uma circunferência, retas tangentes a duas circunferências.
 1.6. Concordâncias: princípios fundamentais, significação, aplicações, concordância interna e externa.

2. DESENHO TÉCNICO
 3.1. Introdução ao Desenho Técnico: História, evolução, características, normas, finalidade e importância.
 3.2. Elementos do Desenho Técnico: escrita normalizada, folhas de desenho (formatos, dobramento, margens, conteúdo), escalas, tipo de linhas e legenda. Normas Técnicas.
 3.3. Classificação das Projeções Geométricas Planas: elementos do sistema de projeção, características, relações, diferenças e aplicações.
 3.4. Conceito de projeção e ortogonalidade: sistema mongeano, método europeu e americano (projeções no 1° e 3 diedros), projeção de figuras planas em um, dois, três e seis planos.
 3.5. Projeções paralelas ortogonais de múltiplas vistas: método, alinhamento, orientação e sequência representativa, Utilização do esboço à mão livre.
 3.6. Significado e utilização de linhas: diferenciação, aplicação, convenções e precedência dos tipos de linhas no Desenho Técnico.
 3.7. Cotagem no Desenho Técnico: conceito, aplicação, elementos, simbologia, convenções, inscrição, orientação e tipologia.
 3.8. Cortes e seções: definição, finalidade, corte por planos paralelos e concorrentes, cortes em desenho de conjunto de peças, tipologias e representação.
 3.9. Projeções paralelas: representação da profundidade e relação tridimensional, projeções
ortogonais axonométricas e projeções oblíquas, método construtivo dos desenhos isométricos e oblíquos, relações entre as projeções ortogonais e paralelas (processo de conversão ortogonal-paralelo), utilização da técnica do *croquis* no desenho à mão livre.

Procedimentos Metodológicos

- Aulas teóricas expositivas e dialogadas.
- Aulas práticas voltadas ao estudo das propriedades espaciais e geométricas das figuras planas e à elaboração representativa de objetos tridimensionais no plano segundo Normas Técnicas com auxílio de materiais e equipamentos de desenho manual e/ou computacional.

Recursos Didáticos

Lousa, pincel marcador, quadro branco, pranchetas, materiais e equipamentos de desenho manual e/ou computadores apresentando instalação de *softwares* gráficos e projetor multimídia.

Avaliação

As avaliações terão caráter contínuo e processual, buscando verificar a evolução da compreensão pelos alunos dos conteúdos ministrados, a partir da observação comportamental, desenvoltura e assiduidade, assim como, mediante a aplicação de instrumentos avaliativos, tais como: exercícios práticos no modo passo a passo com acompanhamento/orientação docente no desenvolvimento das atividades de construções e representações gráficas, assim como, aplicação de provas, discussão dos temas relevantes em seminários.

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ESA.0001

Disciplina: Química Geral
Carga-Horária: 60h (80 h/a)

 Pré-Requisito (s): -
Número de créditos: 4

EMENTA
Conceitos fundamentais da Química; Estrutura Atômica; Tabela Periódica; Ligações Químicas; Forças Intermoleculares; Funções Inorgânicas; Reações Químicas e Estequiometria.

PROGRAMA

Objetivos

Conhecer os princípios que regem a Química e seus conceitos fundamentais, como a ideia de átomos e seus principais modelos representativos e os conceitos de ligações químicas e sua classificação;
Compreender os modelos atômicos modernos e as suas fundamentações;
Relacionar as principais interações entre moléculas com o tipo de ligação entre os átomos;
Conhecer os tipos de reações químicas e reconhece-las na estequiometria da reação.

Bases Científico-Tecnológicas (Conteúdos)

1. Introdução ao estudo de química
 1.1 O que é Química?
 1.2 O que a Química estuda?
 1.3 A contribuição da Química para a sociedade.
2. Propriedades dos Materiais
 2.1 A Matéria e suas propriedades.
 2.2 Energia.
 2.3 Estados de agregação da matéria.
 2.4 Mudanças de estado físico.
 2.5 Fenômenos físicos e químicos.
 2.6 Sistemas, substâncias puras e misturas.
 2.7 Separação de misturas.
3. Modelos sobre a Constituição da Matéria
 3.1 Os primeiros modelos atômicos.
 3.2 Lei ponderal: Conservação da massa (Lavoisier).
 3.3 Modelo atômico de Dalton, Thomson e Rutherford-Bohr.
 3.4 Número atômico, número de massa e massa atômica dos elementos químicos.
4. Classificação Periódica
 4.1 Evolução da organização periódica.
 4.2 Propriedades atômicas e a periodicidade.
 4.3 Propriedades físicas e químicas.
5. Interações Atômicas e Moleculares
 5.1 Estudo das ligações químicas e suas principais propriedades.
 5.2 A polaridade das ligações e das moléculas.
6. Funções da Química Inorgânica
 6.1 Definições e nomenclatura dos ácidos, bases, sais e óxidos.
 6.2 Escalas para medir o caráter ácido e básico: pH e pOH.
 6.3 Indicadores ácido e base.
7. Reações Químicas
 7.1 Equações químicas e balanceamentos.
 7.2 Propriedades e comportamento em solução aquosa – solubilidade.
 7.3 Equações iônicas.
 7.4 Tipos de reações em solução aquosa: Ácido/Base, Precipitação, Formação de gás e Óxido-Redução.
8. Estequiometria
 8.1 Leis Ponderais.
 8.2 Cálculo da fórmula mínima e molecular.
8.3 Problemas envolvendo Reações Consecutivas
8.4 Relações de massa nas equações químicas.
8.5 Reagente limitante.
8.6 Cálculo de rendimento.

Procedimentos Metodológicos
Aulas expositivas/dialogadas e Listas de exercícios.

Recursos Didáticos
Quadro branco; Projetor multimídia; Vídeos; Modelos moleculares.

Avaliação
Será contínua considerando os critérios de participação ativa dos discentes no decorrer das aulas expositivas. Consideraremos a participação dos discentes nas propostas das atividades individuais e coletivas, nas discussões em sala, no planejamento e laboração dos seminários e trabalhos escritos.

Bibliografia Básica

Bibliografia Complementar
Curso: **Engenharia Sanitária e Ambiental**
Código: ENG.0018

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>Algoritmo e Estrutura de Dados</th>
<th>Carga-Horária:</th>
<th>60h (80 h/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-Requisito(s):</td>
<td>-</td>
<td>Número de créditos</td>
<td>4</td>
</tr>
</tbody>
</table>

OBJETIVOS

- Conhecer os princípios da estrutura e do funcionamento do computador.
- Dominar as técnicas de resolução de problemas por computador (desenvolver algoritmos).
- Utilizar o computador para resolução de problemas computacionais.
- Utilizar os conceitos de programação estruturada.
- Diferenciar ambiente operacional de sistema operacional.

EMENTA

Desenvolvimento de computadores e de linguagens de computação. Fases do desenvolvimento de programas. Desenvolvimento de programas em uma linguagem de alto nível: dados; comandos; elementos de modularização; metodologias de desenvolvimento.

PROGRAMA

- **Bases Científico-Tecnológicas (Conteúdos)**

1. **Noções básicas sobre computadores**
 1. Evolução histórica da computação
 2. O computador na sociedade
 3. Hardware
 1.3.1. Memória
 1.3.2. Unidade central de processamento
 1.3.3. Unidades de entrada e saída
 4. Software
 1.4.1. Ambientes e Sistemas operacionais
 1.4.2. Linguagens de programação
 1.4.3. Compiladores
2. **Resolução de problemas via computador**
 2.1. Conceito de algoritmo
 2.2. Estrutura do algoritmo
 2.2.1. Comentários
 2.2.2. Variáveis
 2.2.3. Constantes
 2.2.4. Operadores
 2.2.5. Expressões
 2.3. Desenvolvimento de algoritmo por refinamento sucessivo
 2.4. Execução de algoritmo
3. **Comandos**
 3.1. Seleção
 3.1.1. Simples
 3.1.2. Condicional
 3.1.3. Em cadeia – ‘case’
 3.2. Repetição
 3.2.1. Faça
 3.2.2. Enquanto
 3.2.3. Repita
 3.2.4. Para ... até
4. **Estrutura de dados básica**
 4.1. Variáveis homogêneas
 4.1.1. Vetores
 4.1.2. Matrizes
 4.2. Variáveis heterogêneas
 4.2.1. Registros
5. Modularização
 5.1. Procedimentos
 5.2. Funções
 5.3. Escopo de variáveis
 5.4. Passagem de parâmetros
 5.5. Recursão

6. Estrutura de dados avançada
 6.1. Listas
 6.2. Pilhas
 6.3. Filas

Procedimentos Metodológicos
- Aulas expositivas/dialogadas;
- Listas de exercícios.

Recursos Didáticos
- Quadro branco, marcados e projetor de multimídia;

Avaliação
- Provas escritas;
- Apresentação de seminários.

Bibliografia Básica

Bibliografia Complementar

Software(s) de Apoio:
- Visual Algoritmo (IDE)
Curso: **Engenharia Sanitária e Ambiental**
Código: ENG.0012

<table>
<thead>
<tr>
<th>Disciplina</th>
<th>Leitura e Produção de Textos Acadêmicos</th>
<th>Carga-Horária: 60h (80 h/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-Requisito(s):</td>
<td>-</td>
<td>Número de créditos 4</td>
</tr>
</tbody>
</table>

EMENTA

Texto textualidade, com ênfase em aspectos organizacionais do texto escrito e oral de natureza técnica, científica e/ou acadêmica.

PROGRAMA

Objetivos

Leitura de textos de natureza técnica, científica e/ou acadêmica:

- Identificar marcas estilísticas caracterizadoras da linguagem técnica, científica e/ou acadêmica;
- Reconhecer traços configuradores de gêneros técnicos, científicos e/ou acadêmicos (resumo, resenha, artigo científico e seminário);
- Recuperar a intenção comunicativa no resumo, resenha, artigo científico e seminário.
- Reconhecer as diversas formas de citação do discurso alheio e avaliar-lhes a pertinência no co-texto em que se encontram.
- Avaliar textos/trechos representativos dos gêneros supracitados, considerando a articulação coerente dos elementos linguísticos, dos parágrafos e das demais partes do texto; a pertinência das informações; os juízos de valor; a adequação às convenções da ABNT; e a eficácia comunicativa.

Produção de textos escritos e orais de natureza técnica, científica e/ou acadêmica:

- Expressar-se em estilo adequado aos gêneros técnicos, científicos e/ou acadêmicos.
- Utilizar-se de estratégias de objetividade e de subjetividade de maneira adequada ao gênero textual.
- Citar o discurso alheio de forma pertinente e de acordo com as convenções da ABNT.
- Produzir resumo e seminário conforme diretrizes expostas na disciplina.

Bases Científico-Tecnológicas (Conteúdos)

Organização de textos escritos e orais de natureza técnica, científica e/ou acadêmica:

1. Coesão e coerência textual;
2. Semelhanças e diferenças entre o texto escrito e o texto oral;
3. Características da linguagem técnica, científica e/ou acadêmica;
3.1. Índices de objetividade e de subjetividade

Discurso alheio no texto escrito de natureza técnica, científica e/ou acadêmica:

1. Formas básicas de citação do discurso alheio: discurso direto, indireto, modalização em discurso segundo a ilha textual;
2. Convenções da ABNT para as citações do discurso alheio.

Português padrão escrito:

1. Revisão do padrão oral e do padrão escrito de acordo com a necessidade da turma.

Procedimentos Metodológicos

- Aula dialogada, leitura dirigida, discussão e exercícios com o auxílio das diversas tecnologias da comunicação e da informação.

Recursos Didáticos

- Quadro branco, pincel marcador, mídias diversas.

Avaliação

Continua por meio de atividades orais e escritas (individuais e em grupo).

Bibliografia Básica

Bibliografia Complementar

Curso Superior de Engenharia Sanitária e Ambiental na modalidade presencial IFRN

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>Cálculo Para Engenharia II</th>
<th>Carga-Horária:</th>
<th>90 (120h/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-Requisito(s):</td>
<td>Cálculo para Engenharia I</td>
<td>Número de créditos</td>
<td>6</td>
</tr>
</tbody>
</table>

EMENTA

PROGRAMA

Objetivos

- Compreender as funções e suas variáveis;
- Compreender Séries e Sequências numéricas;
- Abordar os conteúdos necessários para o aprendizado do cálculo;
- Familiarizar o aluno com os conceitos de limites e suas aplicações;
- Compreender os conceitos de limites e derivadas e os processos de cálculo de limites e derivação;
- Desenvolver técnicas para o cálculo de derivadas;
- Utilizar a derivada como um método de determinar os valores máximos e mínimos de uma função;
- Prever e analisar a forma de um gráfico;
- Concluir sobre o comportamento das funções;
- Entender métodos de estimativas feitas com somas finitas;
- Aplicar o Cálculo aos problemas reais da vida profissional;
- Identificar os pontos onde o Cálculo pode auxiliar enquanto ferramenta para diversas ciências e engenharias;
- Conceituar e desenvolver aplicações práticas de derivadas e integrais;
- Habilitar ao uso de Instrumental matemático, enfatizando a aplicação nas soluções de problemas de ordem prática.
- Compreender o conceito e os processos de integração e suas aplicações;
- Desenvolver atitude científica;

Bases Científico-Tecnológicas (Conteúdos)

1. Sequências e Séries
 1.1. Sequências
 1.2. Sequências Monôtonas
 1.3. Séries Infinitas
 1.4. Testes de Convergência
 1.5. Séries Alternadas
 1.6. Convergência Condicional
 1.7. Polinômios de Maclaurin e Taylor
 1.8. Séries de Maclaurin e Taylor
 1.9. Séries de Potências
 1.10. Convergência de Séries de Taylor
 1.11. Derivação e Integração de Séries de Potências
 1.12. Modelagem com Séries

2. Funções Vetoriais
 2.1. Introdução às Funções Vetoriais
 2.2. Cálculo de Funções Vetoriais
 2.3. Mudança de Parâmetro
 2.4. Vetores Tangente, Normal e Binormal Unitários
 2.5. Funções de Duas ou Mais Variáveis
2.6. Limite Vetorial
2.7. Continuidade

3. Derivadas Parciais
 3.1. Derivadas Parciais
 3.2. Diferenciabilidade, Diferenciais e Linearidade Local
 3.3. Regra da Cadeia
 3.4. Derivadas Direcionais e Gradientes
 3.5. Planos Tangentes e Vetores Normais
 3.6. Máximos e Mínimos de Funções de Duas Variáveis
 3.7. Multiplicadores de Lagrange

4. Integrais Múltiplas
 4.1. Integrais Duplas
 4.2. Integrais Duplas de Regiões Não-Retangulares
 4.3. Integrais Duplas em Coordenadas Polares
 4.4. Superfícies Paramétricas
 4.5. Área de Superfície
 4.6. Integrais Triplas
 4.7. Integrais Triplas em Coordenadas Cilíndricas e Esféricas
 4.8. Mudança de Variáveis em Integrais Múltiplas

5. Cálculo Vetorial
 5.1. Campos Vetoriais
 5.2. Integrais de Linha
 5.3. Teorema de Green
 5.4. Integrais de Superfície
 5.5. Teorema da Divergência
 5.6. Teorema de Stokes

Procedimentos Metodológicos
- Aulas expositivas e práticas no computador utilizando softwares matemáticos.

Recursos Didáticos
- Quadro branco, pincel, projetor de multimídia, softwares matemáticos e computador.

Avaliação
- Provas escritas
- Atividades individuais e em grupo

Bibliografia Básica

Bibliografia Complementar
Curso: **Engenharia Sanitária e Ambiental**
Código: ENG.0006

Disciplina: Álgebra Linear Aplicada
Carga-Horária: **60h (80h/a)**
Pré-Requisito(s): Cálculo para Engenharia I
Número de créditos: **4**

EMENTA

PROGRAMA

Objetivos

- Introduzir a linguagem e os conceitos básicos de Álgebra Linear;
- Desenvolver a capacidade de raciocínio abstrato;
- Observar a importância dos espaços vetoriais e das transformações lineares no desenvolvimento de pesquisas no campo da engenharia.
- Desenvolver capacidade científica.

Bases Científico-Tecnológicas (Conteúdos)

1. **Matrizes e Sistemas Lineares**
 1.1. Definição de Matrizes
 1.2. Tipos de Matrizes
 1.3. Operações com Matrizes
 1.4. Sistemas de Equações Lineares
 1.5. Operações Elementares
 1.6. Forma Escada
 1.7. Soluções de um Sistema de Equações Lineares

2. **Determinantes e Matriz Inversa**
 2.1. Definição e Propriedades de Determinantes
 2.2. Desenvolvimento de Laplace
 2.3. Matriz Adjunta
 2.4. Inversa de uma Matriz
 2.5. Regra de Cramer
 2.6. Procedimento para obter a Matriz Inversa

3. **Espaços Vetoriais**
 3.1. Vetores no Plano e no Espaço
 3.2. Definição de Espaço Vetorial
 3.3. Subespaços Vetoriais
 3.4. Combinações Lineares
 3.5. Dependência e Independência Linear
 3.6. Bases e Dimensões
 3.7. Soma Direta
 3.8. Mudança de Base

4. **Transformações Lineares**
 4.1. Definição de Transformação Linear
 4.2. Núcleo e Imagem de uma Transformação Linear
 4.3. Isomorfismos
 4.4. Operadores Lineares
 4.5. Transformações Lineares e Matrizes

5. **Espaços com Produto Interno**
 5.1. Definição de Produto Interno
 5.2. Norma de um Vetor
 5.3. Desigualdade de Cauchy-Schwarz
 5.4. Ortonormalidade e Ortonormalidade
5.5. Processo de Ortonormalização de Gram-Schmidt

6. Autovalores e Autovetores
 6.1. Definição
 6.2. Polinômio Característico
 6.3. Diagonalização de Operadores
 6.4. Diagonalização de Matrizes

Procedimentos Metodológicos
- Aulas expositivas dialogadas; aulas práticas no computador, utilizando softwares matemáticos.

Recursos Didáticos
- Quadro branco, pincel, projetor de multimídia, softwares matemáticos e computador.

Avaliação
- Provas escritas;
- Atividades individuais e em grupo.

Bibliografia Básica

Bibliografia Complementar
Curso Superior de Engenharia Sanitária e Ambiental na modalidade presencial IFRN

<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>ESA.0005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>Física Geral II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga-Horária:</td>
<td>60 (80h/a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-Requisito(s):</th>
<th>Física Geral I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de créditos:</td>
<td>4</td>
</tr>
</tbody>
</table>

EMENTA
Calorimetria e Termodinâmica, Estática dos fluidos e Dinâmica dos Fluidos.

PROGRAMA

Objetivos
Fazer uma revisão das principais leis básicas da termologia e hidrostática dentro da formulação conceitual e matemática com o objetivo de interpretar fenômenos, prever situações e encontrar soluções adequadas para problemas aplicados à área da engenharia sanitária e ambiental.

Bases Científico-Tecnológicas (Conteúdos)

MÓDULO: TERMOLOGIA

1. Calorimetria
 - Conceito de calor e temperatura
 - Transferência de calor
 - Capacidade térmica e calor específico
 - Calor de combustão
 - Experimentação

2. Termodinâmica
 - 1ª Lei da termodinâmica
 - Entropia e 2ª Lei da termodinâmica
 - Experimentação

MÓDULO: HIDROSTÁTICA E HIDRODINÂMICA

1. Estática dos fluidos
 - Fluidos.
 - Pressão e massa específica.
 - Variação de pressão em um fluido em repouso.
 - Princípio de Pascal e de Arquimedes.
 - Medida de pressão;
 - Experimentação.

2. Dinâmica dos fluidos
 - Conceitos gerais sobre o escoamento dos fluidos.
 - Linhas de corrente.
 - Equação de continuidade
 - Equação de Bernoulli.
 - Aplicações das equações de Bernoulli e da continuidade.
 - Conservação do momento na mecânica dos fluidos.
 - Experimentação.

Procedimentos Metodológicos

- Aulas expositivas e dialogadas, com utilização de retro projetor, projetor multimídia e quadro, exercícios e seminários.

Reursos Didáticos

- Projetor de multimídia, quadro branco, filmes.

Avaliação

- O processo avaliativo ocorrerá de forma contínua (com reorientação das atividades no processo), estando os alunos avaliados com base nos seguintes critérios: participação quanto à realização de atividades e debates; assiduidade; responsabilidade quanto ao cumprimento do tempo previsto para realização das atividades e qualidade das atividades realizadas e avaliação escrita.

Bibliografia Básica

Bibliografia Complementar

Curso Superior de Engenharia Sanitária e Ambiental na modalidade presencial IFRN

<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>CIV.0007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>Desenho Técnico Assistido por Computador</th>
<th>Carga-Horária:</th>
<th>60h (80h/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-Requisito(s):</td>
<td>Desenho Técnico</td>
<td>Número de créditos</td>
<td>4</td>
</tr>
</tbody>
</table>

EMENTA

O uso do computador como ferramenta para a produção gráfica visando: a aplicação das normas do desenho técnico, a formatação de papel com legenda, a diferenciação de traços, o desenho em perspectiva, as projeções ortográficas, o uso de escalas, as representações de simetria e a aplicação de cotas.

PROGRAMA

Objetivos

- Utilizar o computador como ferramenta de trabalho no Desenho Técnico;
- Conhecer o Desenho Técnico e suas Normas;
- Desenhar Peças e Sólidos Geométricos através de vistas ortográficas.

Bases Científico-Tecnológicas (Conteúdos)

1. Apresentação do programa Auto-CAD
 1.1. Comandos de edição e de formatação
2. Normas básicas do Desenho Técnico - ABNT
 2.1. Formatação de folha e legenda
 2.2. Linhas e tipos de linhas
3. Perspectiva isométrica
 3.1. Uso do modo view para traçado em perspectiva
 3.2. Interpretação de vistas ortográficas a partir da perspectiva
4. Projeções ortográficas
 4.1. Vistas: frontal, lateral (esquerda) e superior
5. Desenho em escala
 5.1. Redução
 5.2. Ampliação
6. Representações de eixos específicos em vistas ortográficas
 6.1. Eixos de simetria
 6.2. Centro de furos e cavidades
7. Sistemas de cotagem
 7.1. Desenho mecânico - elétrico
 7.2. Desenho arquitetônico

Procedimentos Metodológicos

- Aulas expositivas/dialogadas;
- Aulas práticas no Laboratório de Informática;
- Listas de exercícios.

Recursos Didáticos

- Quadro branco, pincel, computador com programa AutoCAD e projetor de multimídia
- Computadores com programa AutoCAD para uso individualizado de cada aluno.

Avaliação

- Atividades individuais para a produção de desenhos normatizados com uso do AutoCAD em classe.

Bibliografia Básica

Bibliografia Complementar

Software(s) de Apoio:
- Software gráfico para execução dos desenhos – AUTOCAD.
Curso: Engenharia Sanitária e Ambiental
Código: ESA. 0004

Disciplina: Química Analítica
Carga-Horária: 120h (90h/a)

Pré-Requisito(s): Química Geral

Número de créditos: 6

EMENTA
Introdução ao estudo da química analítica do ponto de vista da determinação da análise quantitativa; tratamento estatísticos Métodos gerais de análises químicas, abrangendo desde os métodos clássicos aos mais modernos métodos instrumentais, além de expressão e interpretação de resultados de análises.

PROGRAMA
Objetivos

Familiarizar o estudante com conceitos básicos de Química Analítica, sob o ponto de vista teórico e prático. Determinação qualitativa de espécies presentes em amostras, através de análise de cátions e anions.

Bases Científico-Tecnológicas (Conteúdos)

1. Introdução a Química Analítica Quantitativa
 1.1 Distinção entre a Química Analítica Qualitativa e Quantitativa;
 1.2 Métodos clássicos de análise quantitativa:
 1.2.1 Análise gravimétrica e análise volumétrica.
 1.3 Aplicações da Química Analítica.

2. Tratamento de dados em análise quantitativa
 2.1 Exatidão versus precisão;
 2.2 Erros em análise; Algarismos significativos;
 2.3 Tratamento estatístico (intervalo de confiança; teste T; Teste Q).

3. Titulação de Neutralização
 3.1 Introdução a análise volumétrica;
 3.2 Classificação das reações em análise volumétrica;
 3.3 Soluções e indicadores para reações de neutralização;
 3.4 Curvas de Titulação para ácidos e bases fortes;
 3.5 Curva de Titulação para ácido fraco e base forte e vice-versa.

4. Complexometria
 4.1 Complexos de EDTA com íons metálicos;
 4.2 Constantes de formação de complexos com EDTA;
 4.3 Constante de formação condicional;
 4.4 Curvas de titulação com EDTA;
 4.5 Indicadores metalocrômicos.

5. Precipitimetria
 5.1 Separação de compostos por precipitação;
 5.2 Curvas de titulação por precipitação – titulação de um único ânion;
 5.3 Curvas de titulação por precipitação – titulação de uma mistura de ânions;
 5.4 Método Mohr;
 5.5 Método Volhard.

6. Gravimetria
 6.1 Introdução a análise gravimétrica;
 6.2 Tipos de análise gravimétrica;
 6.3 Gravimetria por precipitação;
 6.4 Aplicações de análise gravimétrica.

Procedimentos Metodológicos
Aulas expositivas com auxílio do retroprojetor, quadro e giz. Aulas experimentais.

Recursos Didáticos
Quadro branco, projetor multimídia, computador, aparelho de vídeo/áudio/TV.

Avaliação
Será contínua considerando participação no decorrer das aulas expositivas e na produção de trabalhos acadêmicos: trabalhos escritos e orais, individuais e em grupo (sínteses, seminários, aulas experimentais, mapas metabólicos, relatórios entre outros).

Bibliografia Básica

Bibliografia Complementar

<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>ENG.0019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>Linguagem de programação</th>
<th>Carga-Horária:</th>
<th>60h (80h/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-Requisito(s):</td>
<td>Algoritmos e Estrutura de Dados</td>
<td>Número de créditos</td>
<td>4</td>
</tr>
</tbody>
</table>

EMENTA

- Familiarizar o estudante com o modelo sequencial de computação;
- Apresentar conceitos básicos de linguagens de programação;
- Capacitar o estudante no uso da linguagem C;
- Aprender o processo básico de desenvolvimento de software (concepção, edição, execução e teste de programas de computador).

Bases Científico-Tecnológicas (Conteúdos)

1. Linguagem de programação
 1.1. Conceitos
 1.1.1. Legibilidade
 1.1.2. Desempenho
 1.1.3. Segurança
 1.1.4. Portabilidade
 1.1.5. Confiabilidade
 1.1.6. Flexibilidade

2. Execução de programas
 2.1. Interpretação
 2.2. Compilação
 2.3. Métodos híbridos
 2.4. Máquina virtual x máquina real

3. Ambiente de programação
 3.1. Editores
 3.2. Compiladores
 3.3. Ambiente integrado de desenvolvimento – IDE
 3.4. Geradores de código
 3.5. Programas auxiliares

4. Linguagem de programação C
 4.1. Histórico
 4.2. Características básicas
 4.3. C padrão ANSI
 4.4. Estrutura de um programa em C

5. Declaração de variáveis
6. Operadores
7. Funções de entrada e saida
8. Estruturas de controle de fluxo
9. Vetores e matrizes
10. Registros
11. Strings
12. Funções
13. Tipos de dados definidos pelo usuário
14. Ponteiros
15. Recursão
16. Arquivos
17. Projeto de sistemas
 17.1. Definição de macros
 17.2. Diretivas para compilação condicional
 17.3. Arquivos de cabeçalho
 17.4. Divisão em arquivos separados
 17.5. Definição de bibliotecas de ligação estática
 17.6. Compilação separada usando o MAKE

Procedimentos Metodológicos
- Aulas expositivas/dialogadas;
- Aulas práticas no Laboratório de;
- Listas de exercícios.

Recursos Didáticos
- Quadro branco, pincel e projetor de multimídia;
- Computadores.

Avaliação
- Provas escritas;
- Provas práticas;
- Apresentação de projetos.

Bibliografia Básica

Bibliografia Complementar

Software(s) de Apoio:
- C ANSI (IDE).
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0055

Disciplina: Introdução às Atividades de Extensão
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): -
Número de créditos: 2

EMENTA
Introduzir conceitos e aplicações da Extensão, com ênfase no que é desenvolvido na Instituição, para viabilizar a atuação dos docentes em Programas e Projetos de Extensão.

PROGRAMA

Objetivos

• Compreender os aspectos teóricos e práticos da Extensão Universitária;
• Conhecer a Legislação e as diretrizes principais de Extensão;
• Identificar os Programas e Projetos de Extensão desenvolvidos no curso;
• Reconhecer as etapas de planejamento e execução de projetos e atividades de extensão;
• Reconhecer os Negócios de Impacto social como estratégia de empreender na Engenharia;
• Visualizar a extensão como exercício da cidadania, construção da performance profissional e responsabilidade social.

Bases Científico-Tecnológicas (Conteúdos)
1. Extensão Universitária: Breve Histórico, Conceitos e Princípios.
2. Fundamentação legal da Extensão Universitária.
3. Programas, Projetos e ações de Extensão.
4. Aplicações práticas de Extensão em Engenharia.
5. Negócios de Impacto Social.
6. Modalidades de Programas e Projetos de Extensão ofertados ao Curso de Engenharia Sanitária e Ambiental

Procedimentos Metodológicos

Recursos Didáticos
Quadro branco, pincel e projetor de multimídia

Avaliação
Através da participação, com exercícios práticos e da avaliação dos trabalhos propostos escritos, individuais e em grupo e da produção de projetos de extensão. Relatórios de visitas técnicas e produção de artigos.

Bibliografia Básica

Bibliografia Complementar
<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental Código: ENG.0005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplina:</td>
<td>Cálculo para Engenharia III</td>
</tr>
<tr>
<td>Pré-Requisito(s):</td>
<td>Cálculo para Engenharia II, Álgebra Linear Aplicada</td>
</tr>
<tr>
<td>Carga-Horária:</td>
<td>90h (120h/a)</td>
</tr>
<tr>
<td>Número de créditos:</td>
<td>6</td>
</tr>
</tbody>
</table>

EMENTA

PROGRAMA

Objetivos

- Desenvolver no aluno a habilidade de entender e utilizar adequadamente a linguagem, os conceitos e os fundamentos da matemática e aprimorar a sua capacidade de aplicar direta e apropriadamente esses a problemas e situações da área da ciência e tecnologia.
- Aplicar o Cálculo aos problemas reais da vida profissional;
- Identificar os pontos onde o Cálculo pode auxiliar enquanto ferramenta para diversas ciências e engenharias;
- Conceituar e desenvolver aplicações práticas de derivadas e integrais;
- Habilitar ao uso de Instrumental matemático, enfatizando a aplicação nas soluções de problemas de ordem prática.
- Desenvolver atitude científica;

Bases Científico-Tecnológicas (Conteúdos)

Equações Diferenciais Ordinárias
- 1.1 Equação Diferencial de 1ª Ordem
- 1.2 Equação Diferencial de 1ª Ordem com Variáveis Separáveis
- 1.3 Equação Diferencial Homogênea de 1ª Ordem
- 1.4 Equação Diferencial Exata
- 1.5 Equações Diferenciais não resolvidas por Derivada
- 1.6 Equações Diferenciais de Lagrange
- 1.7 Equações Diferenciais de Ordem Superior
- 1.8 Equações Diferenciais Lineares de Segunda Ordem com Coeficientes Constantes.
- 1.9 Equações de Euler
- 1.10 Sistema de Equações Diferenciais
- 1.11 Soluções em séries de potência.
- 1.12 Noções de Estabilidade e Aplicações em Física.

Transformada de Laplace.
- 2.1 Definição.
- 2.2 Soluções de problemas de valores iniciais.
- 2.3 Equações diferenciais com forças descontínuas: função Delta de Heaviside.
- 2.4 Função impulso: delta de Dirac.
- 2.5 Integral de convolução

Séries de Fourier
- 3.1 Definição.
- 3.2 Expansão de funções periódicas em séries de Fourier.
- 3.3 Teorema de convergência.
- 3.4 Funções pares e ímpares.
Equações Diferenciais Parciais (EDP)
4.1 Definição e classificação.
4.2 Método de separação de variáveis. Condições de contorno.
4.3 Equação de condução calor.
4.4 Equação da corda vibrante.
4.5 Equação de Laplace.

Procedimentos Metodológicos
• Aulas expositivas e práticas no computador utilizando softwares matemáticos.

Recursos Didáticos
• Quadro branco, pincel, projetor de multimídia, softwares matemáticos e computador.

Avaliação
• Provas escritas
• Atividades individuais e em grupo

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0007

Disciplina: Estatística Aplicada
Carga-Horária: 60 (80h/a)

Pré-Requisito(s): Álbegra Linear Aplicada
Número de créditos: 4

EMENTA
Distribuições de Probabilidade, Estatística Descritiva, Intervalos de Confiança, Testes de Hipóteses, Correlação, Regressão linear, Análise de Variância.

PROGRAMA
Objetivos

- Organizar dados com uso de tabelas e gráficos;
- Realizar cálculos probabilísticos;
- Aplicar testes de hipóteses;
- Analisar correlações e regressões lineares.

Bases Científico-Tecnológicas (Conteúdos)

7. Noções de Probabilidade
 7.1. Espaço amostral e evento
 7.2. Teorema da soma e do produto
 7.3. Distribuições de probabilidade (discretas e contínuas)

8. Introdução a estatística
 8.1. Estatística descritiva e inferencial
 8.2. Tipos de variáveis
 8.3. Organização de resultados em tabelas e gráficos

9. Distribuição de frequência (tabelas e gráficos)

10. População e amostra
 10.1. Noções de amostragem
 10.2. Medidas de tendência central (média, mediana, moda)
 10.3. Medidas de dispersão (desvio padrão, variância, coeficiente de variação)

11. Distribuição normal
 11.1. Principais características
 11.2. Testes de normalidade
 11.3. Curva z e Curva t
 11.4. Intervalos de confiança

12. Testes de hipóteses
 12.1. Média de uma distribuição normal
 12.2. Proporções
 12.3. Duas populações
 12.4. Duas proporções
 12.5. Testes não paramétricos

13. Análise de correlação
14. Análise de regressão linear
15. Análise de variância

Procedimentos Metodológicos
- Aulas expositivas e práticas no computador utilizando softwares estatísticos.

_recursos didáticos
- Quadro branco, pincel e projetor de multimídia, softwares estatísticos, computador.

Avaliação
- Provas escritas e
- Atividades individuais e em grupo trabalhando com bancos de dados ambientais.

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0006

Disciplina: Física Geral III
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Física Geral II
Número de créditos: 4

EMENTA

PROGRAMA
Objetivos
Fazer uma revisão dos preceitos da eletrostática e eletrodinâmica dentro da formulação conceitual e matemática com o objetivo de interpretar fenômenos, prever situações e encontrar soluções adequadas para problemas aplicados a área da engenharia sanitária e ambiental.

Bases Científico-Tecnológicas (Conteúdos)
1. Carga Elétrica e Lei de Coulomb;
2. Campo Elétrico e Lei de Gauss.
3. Potencial Elétrico.
4. Capacitância e Propriedades dos Dielétricos.
5. Corrente Elétrica,
6. Resistência Elétrica e Força Eletromotriz.
7. Circuitos de Corrente Contínua.

Procedimentos Metodológicos
- Aulas expositivas e dialogadas, com utilização de retro projetor, projetor multimídia e quadro, exercícios e seminários.

Recursos Didáticos
- Projetor de multimídia, quadro branco, filmes.

 Avaliação
- O processo avaliativo ocorrerá de forma contínua (com reorientação das atividades no processo), estando os alunos avaliados com base nos seguintes critérios: participação quanto à realização de atividades e debates; assiduidade; responsabilidade quanto ao cumprimento do tempo previsto para realização das atividades e qualidade das atividades realizadas e avaliação escrita.

Bibliografia Básica

Bibliografia Complementar

Software(s) de Apoio:
Curso: Engenharia Sanitária e Ambiental
Código: CIV.0018

Disciplina: Topografia
Carga-Horária: 60 (80h/a)

Pré-Requisito(s): Desenho Técnico Assistido por Computador
Número de créditos: 4

EMENTA
A Topografia no contexto das técnicas de mensuração e métodos de tratamento de dados gráficos.
Noções básicas de cartografia, Sistemas Globais de Posicionamento por Satélite, locações, cálculos de áreas, volumes. Métodos planimétricos, altimétricos e planialtimétricos de levantamentos aplicados à Engenharia Sanitária e Ambiental

PROGRAMA

Objetivos

- Interpretar e representar a superfície topográfica como recurso auxiliar nas obras de construção civil, saneamento e recursos hídricos;
- Manusear e instalar corretamente os equipamentos e instrumentos topográficos;
- Identificar as especificações técnicas dos equipamentos topográficos;
- Interpretar e criar projetos topográficos.

Bases Científico-Tecnológicas (Conteúdos)

1. **INTRODUÇÃO**
1.1. Objetivos e fins da topografia.
1.2. Importância da topografia para a engenharia.
1.3. Formas de representação da terra, sistemas de referência.
1.4. Ponto topográfico e alinhamento.
1.5. Escalas.
2. **PLANIMETRIA**
2.1. Medidas angulares e lineares.
2.2. Orientação – Rumos e Azimutes.
2.3. Cálculos de coordenadas – princípio matemático.
2.4. Métodos de levantamento topográfico – irradiação, caminhamento e interseção.
2.5. Desenho planimétrico.
2.6. Avaliação de áreas planas.
3. **ALTIMETRIA**
3.1. Conceitos
3.2. Nivelamento trigonométrico.
3.3. Taqueometria
3.4. Nivelamento geométrico
3.5. Representação da superfície topográfica.
3.6. Desenho de perfis topográficos e curvas de nível;
4. **AUTOMATIZAÇÃO DA TOPOGRAFIA**
4.1. Posicionamento por satélite – princípios, vantagens, restrições e aplicações
4.2. Processamento dos dados de levantamento: cálculos e desenho
5. **UTILIZAÇÃO DA PLANTA TOPOGRÁFICA (PLANIALTIMÉTRICA)**
5.1. Leitura e interpretação de planta planialtimétrica
5.2. Cálculo de volume.
5.3. Noções de localização de edifícios.

Procedimentos Metodológicos

- Aulas expositivas/dialogadas;
- Aulas práticas em salas de pranchetas, laboratório de informática, laboratório de topografia e em campo (externas);
• Resolução de problemas.

Recursos Didáticos

• Lousa, pincel marcador, computador, instrumentos topográficos, software de topografia e projetor multimídia.

Avaliação

• Provas escritas;
• Listas de exercícios;
• Atividades de desenho;
• Relatórios de campo.

Bibliografia Básica

Bibliografia Complementar

EMENTA
O planeta Terra; Minerais; Rochas; Solos; Elementos estruturais das rochas; Investigação do subsolo; Geologia Ambiental.

PROGRAMA
Objetivos

- Entender o funcionamento da dinâmica interna e externa;
- Compreender a importância dos minerais formadores de rocha na constituição das rochas magmáticas, sedimentares e metamórficas, e na formação do solo.
- Relacionar o uso e ocupação do solo, com a susceptibilidade para os desastres ambientais mais comuns no território brasileiro.

Bases Científico-Tecnológicas (Conteúdos)

1. O planeta Terra
 1.1. Origem
 1.2. Estrutura
 1.3. A crosta da Terra
 1.4. Teoria das placas tectônicas

2. Minerais
 2.1. Conceito de mineral
 2.2. Propriedades dos minerais
 2.3. Descrição dos minerais formadores de rochas

3. Rochas
 3.1. Definição
 3.2. Classificação
 3.3. Rochas magmáticas
 3.4. Rochas sedimentares
 3.5. Rochas metamórficas
 3.6. Propriedades das rochas
 3.7. Descrição petrográfica em escala macroscópica

4. Solos
 4.1. Intemperismo e erosão
 4.2. Tipos de solos
 4.3. Propriedades gerais dos solos
 4.4. Classificação granulométrica de solos
 4.5. Representação granulométrica dos solos
 4.6. Ensaios de simples caracterização
 4.7. Identificação de solos no campo

5. Elementos estruturais das rochas
 5.1. Deformações das rochas
 5.2. Dobras
 5.3. Falhas
 5.4. Fraturas
 5.5. Oрогênese

6. Investigação do subsolo
 6.1. Métodos geofísicos (indireto)
 6.2. Métodos diretos para investigação de rochas
7. Geologia Ambiental
 7.1. Ambientes geológicos
 7.2. Formas de uso e ocupação do solo e os impactos resultantes
 7.3. Desastres naturais

<table>
<thead>
<tr>
<th>Procedimentos Metodológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aulas expositivas/dialogadas;</td>
</tr>
<tr>
<td>• Listas de exercício;</td>
</tr>
<tr>
<td>• Desenvolvimento de Projetos;</td>
</tr>
<tr>
<td>• Aula de Campo;</td>
</tr>
<tr>
<td>• Aula prática com descrição de rochas.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recursos Didáticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Quadro branco, pincel e projetor de multimídia;</td>
</tr>
<tr>
<td>• Bússola;</td>
</tr>
<tr>
<td>• Martelo Geológico;</td>
</tr>
<tr>
<td>• Lupa;</td>
</tr>
<tr>
<td>• Material para amostragem geológica.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Avaliação</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Provas escritas;</td>
</tr>
<tr>
<td>• Relatório de Campo;</td>
</tr>
<tr>
<td>• Atividades individuais e em grupo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bibliografia Básica</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bibliografia Complementar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GUERRA Antonio José Teixeira and JORGE, Maria do Carmo Oliveira. Processos erosivos e recuperação de áreas degradadas. [s.l.]: Editora Oficina de Textos, 2013.</td>
</tr>
</tbody>
</table>
Curso: Engenharia Sanitária e Ambiental
Código: CIV.0002

Disciplina: Ciência e Tecnologia dos Materiais
Carga-Horária: 30h (40 h/a)

Pré-Requisito(s): Química Analítica
Número de créditos: 2

EMENTA
Conhecimentos básicos sobre estruturas, propriedades, aplicações, ciclos de vida e seleção de materiais.

PROGRAMA
Objetivos

- Compreender a base teórica, em nível introdutório, da Engenharia de Materiais, correlacionar o arranjo atômico com as propriedades macroscópicas dos materiais cerâmicos, metálicos e poliméricos. Utilizar os conceitos básicos da química geral, física geral e física do estado sólido e matemática, para constituir-se a base científica que da suporte a interpretação dos fenômenos que ocorrem nos materiais.

Bases Científico-Tecnológicas (Conteúdos)

1. Introdução à Ciência dos Materiais
2. Ligações Químicas. Arranjos atômicos. Cristalografia e Difração de Raios-X
3. Propriedades Físicas e Mecânicas dos Materiais
4. Materiais Metálicos e suas aplicações
5. Materiais Cerâmicos e suas aplicações
6. Polímeros e suas aplicações
7. Estrutura e Propriedades dos Materiais Compósitos
8. Propriedades Térmicas dos Materiais.

Procedimentos Metodológicos

- Aulas expositivas/dialogadas
- Atividades práticas
- Visitas técnicas.

Recursos Didáticos

Lousa, pincel marcador, computador e projetor multimídia

Avaliação

- Prova escrita.
- Lista de exercícios.
- Seminários.

Bibliografia Básica

Bibliografia Complementar

EMENTA
Introdução; Os Ecossistemas; Dinâmica de Populações e Comunidades; Ciclagem de materiais nos Sistemas Ecológicos; Desenvolvimento e Estabilidade dos Ecossistemas; A Biodiversidade nos Biomas; Impactos Ambientais e seus Efeitos sobre os Ecossistemas.

PROGRAMA
Objetivos

- Saber como se deu o surgimento e a evolução da Ecologia como ciência.
- Compreender a natureza multi e interdisciplinar da Ecologia.
- Discutir o modelo hierárquico dos sistemas biológicos à luz da Teoria Geral dos Sistemas.
- Diferenciar as abordagens reducionista e holística no estudo da Ecologia.
- Conceituar ecossistemas e compreender sua estrutura e funcionamento.
- Descrever as variações no fluxo e na qualidade de energia ao longo das cadeias alimentares.
- Compreender a hipótese Gaia e suas aplicações no contexto atual.
- Diferenciar as relações ecológicas intra e interespécíficas, harmônicas e desarmônicas.
- Compreender a importância dos mecanismos de controle populacional para o equilíbrio dos ecossistemas.
- Descrever a ocorrência dos ciclos biogeoquímicos, enfatizando sua importância para a vida no planeta.
- Descrever as modificações que ocorrem nos ecossistemas ao longo dos processos de sucessão ecológica.
- Caracterizar os biomas brasileiros e os ecossistemas a nível local, quanto aos seus principais aspectos físicos e bióticos.
- Compreender a importância da biodiversidade para o equilíbrio e a sobrevivência do planeta.
- Discutir as causas dos principais impactos ambientais da atualidade, bem como seus efeitos sobre os ecossistemas.

Bases Científico-Tecnológicas (Conteúdos)

1. Introdução
 1.1. Definição, histórico e atual abrangência da Ecologia
 1.2. Modelo hierárquico dos sistemas biológicos
 1.3. Propriedades coletivas e emergentes de um biosistema
 1.4. As abordagens reducionista e holística da Ecologia

2. Os Ecossistemas
 2.1. Conceitos básicos
 2.2. Componentes abióticos, bióticos e estrutura trófica
 2.3. A hipótese Gaia
 2.4. Ambientes de entrada e saída de energia
 2.5. Os ambientes primevos, rurais e urbanos
 2.6. Fluxo e qualidade de energia nas cadeias tróficas
 2.7. Modelos funcionais de sistemas ecológicos

3. Dinâmica de Populações e Comunidades
 3.1. Densidade populacional
 3.2. Taxas de crescimento populacional, natalidade e mortalidade
 3.3. Mecanismos de controle populacional
 3.4. Relações intra e interespécíficas, harmônicas e desarmônicas

4. Ciclagem de Materiais nos Sistemas Ecológicos
4.1. Ciclo hidrológico
4.2. Ciclo do Carbono
4.3. Ciclo do Oxigênio
4.4. Ciclo do Nitrogênio
4.5. Ciclo do Fósforo

5. Desenvolvimento e Estabilidade nos Ecossistemas
 5.1. Sucessão em ambientes terrestres e aquáticos
 5.2. Regeneração, recuperação ou reabilitação de ambientes perturbados
 5.3. Capacidade de suporte de um ambiente

6. A Biodiversidade nos Biomas
 6.1. A importância da biodiversidade para o planeta
 6.2. Principais Biomas no Brasil e no mundo
 6.3. Ecossistemas de água doce, marinhos e estuarinos
 6.4. Ecossistemas a nível local
 6.5. As Unidades de Conservação

7. Impactos Ambientais e seus Efeitos sobre os Ecossistemas
 7.1. Eutrofização de ambientes aquáticos
 7.2. Poluição atmosférica
 7.3. Desmatamento
 7.4. Contaminação do solo e dos aquíferos subterrâneos

Procedimentos Metodológicos
• Aulas expositivas.
• Aula de campo.
• Leitura e discussão de textos.
• Resolução de estudos dirigidos.
• Elaboração e apresentação de seminários.

Recursos Didáticos
• Quadro branco, pincel e projetor de multimídia

Avaliação
• Prova escrita.
• Discussões em sala de aula.
• Atividades individuais e em grupo.
• Apresentação dos seminários.
• Participação em aula de campo.

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ENG.0028
Disciplina: Resistência dos Materiais
Carga-Horária: 60h (80h/a)
Pré-Requisito(s): Cálculo para Engenharia III
Número de créditos: 4

EMENTA
Definições de tensão e deformação. Esforços axiais, de flexão e de Cisalhamento. Tensões e deformações em barras carregadas transversalmente: isostáticas e hiperestáticas. Flambagem em colunas. Análise de tensões e deformações.

PROGRAMA
Objetivos
Desenvolver a capacidade de resolver problemas de Engenharia que envolvem a mecânica dos sólidos deformáveis, através da aplicação de princípios fundamentais, de maneira simples e lógica.

Bases Científico-Tecnológicas (Conteúdos)

1. Tração, compressão e cisalhamento
 1.1. Definições de tensão e de deformação;
 1.2. Ensaio de tração simples;
 1.3. Tensão admissível;
 1.4. Lei de Hooke;
 1.5. Coeficiente de Poisson;
 1.6. Tensões e deformações cisalhantes (transversais);
 1.7. Energia de deformação;
 1.8. Peças prismáticas em solicitação axial;
 1.9. Estruturas hiperestáticas;
 1.10. Carregamento térmico.

2. Tensões em vigas
 2.1. Tensões normais;
 2.2. Tensões de cisalhamento;
 2.3. Flexão composta.

3. Análise de tensões e deformações
 3.1. Estudo do estado plano de tensões;
 3.2. Estudo do estado triaxial de tensões;
 3.3. Estudo do estado plano de deformações;
 3.4. Módulo de elasticidade transversal;
 3.5. Lei de Hooke generalizada;
 3.6. Energia de deformação elástica;
 3.7. Eqs. para transformação de tensões e representação gráfica;
 3.8. Eqs. para transformação de deformação e representação gráfica.

4. Deformações em vigas
 4.1. Eq. diferencial da linha elástica;
 4.2. Vigas estaticamente determinadas (casos de isostática);
 4.3. Vigas estaticamente indeterminadas (casos de hiperestática).

5. Flambagem em colunas
 5.1. Cargas críticas em colunas;
 5.2. Tensões críticas em colunas.

Procedimentos Metodológicos

- Aulas expositivas/dialogadas
- Gráficos gerados por computador
- Resolução de problemas.

Recursos Didáticos
Lousa, pincel marcador, computador, software de computação algébrica e projetor multimídia.

Avaliação

- Provas escritas
- Listas de exercícios

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ESA.0009
Disciplina: Fenômenos dos Transportes
Carga-Horária: 60h (80h/a)
Pré-Requisito(s): Cálculo para Engenharia III, Física Geral III
Número de créditos: 4

EMENTA

PROGRAMA
Objetivos
Fazer uma revisão dos preceitos da mecânica dos fluidos dentro da formulação conceitual e matemática com o objetivo de interpretar fenômenos, prever situações e encontrar soluções adequadas para problemas aplicados a área da engenharia sanitária e ambiental.

Bases Científico-Tecnológicas (Conteúdos)
- Conceitos fundamentais.
- Propriedades dos fluidos.
- Estática dos fluidos.
- Medidas de pressão.
- Cinemática dos fluidos.
- Dinâmica dos fluidos.
- Análise de escoamentos dos fluidos.
- Equação de Bernoulli.

Procedimentos Metodológicos
- Aulas expositivas e dialogadas, com utilização de retro projetor, projetor multimídea e quadro, exercícios e seminários.

Recursos Didáticos
- Projetor de multimídia, quadro branco, filmes.

Avaliação
- O processo avaliativo ocorrerá de forma contínua (com reorientação das atividades no processo), estando os alunos avaliados com base nos seguintes critérios: participação quanto à realização de atividades e debates; assiduidade; responsabilidade quanto ao cumprimento do tempo previsto para realização das atividades e qualidade das atividades realizadas e avaliação escrita.

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ENG.0014

Disciplina: Metodologia Científica e Tecnológica
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): Leitura e Produção de Textos Acadêmicos
Número de créditos: 2

EMENTA

PROGRAMA
Objetivos

Geral:
Compreender os aspectos teóricos e práticos referentes à elaboração de trabalhos científicos, enfatizando a importância do saber científico no processo de produção do conhecimento.

Especificos:
- Conhecer os fundamentos da ciência;
- Conhecer diferentes métodos de estudo e pesquisa;
- Saber formular o problema de pesquisa, construir a problemática, elaborar hipóteses.
- Ter capacidade de planejamento e execução de trabalhos científicos;
- Conhecer as etapas formais de elaboração e apresentação de trabalhos científicos;
- Saber usar as Normas Técnicas de Trabalhos Científicos;
- Planejar e elaborar trabalhos científicos.

Bases Científico-Tecnológicas (Conteúdos)
1. Ciência, conhecimento e pesquisa.
2. Conceito e função da metodologia científica.
3. Técnicas de estudo e trabalhos científicos.
4. Normas Técnicas de Trabalhos Científicos.
5. Etapas formais para elaboração de trabalhos acadêmicos (fichamentos, resumos, resenhas, relatórios, artigo científico, monografias).
6. Pesquisa, projeto e relatórios de pesquisa.

Procedimentos Metodológicos
Quadro branco, pincel e projetor de multimídia.

Avaliação
Através da participação, com exercícios práticos e da avaliação dos trabalhos propostos escritos, individuais e em grupo e da produção de alguns trabalhos acadêmicos (relatório, resumos, resenhas e artigos científicos.). Avaliação individual pesquisada, avaliação contínua de produção.

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0034

Disciplina: Sensoriamento Remoto e Geoprocessamento Aplicado
Carga-Horária: 90h (120h/a)

Pré-Requisito(s): Topografia
Número de créditos: 6

EMENTA
Cartografia Digital, Sensoriamento Remoto, Sistema de posicionamento Global. Sistema de Informação Geográfica, Geoprocessamento e introdução a Geostatística, Uso e aplicações com Drones

PROGRAMA
Objetivos

Fornecer ao aluno os conhecimentos necessários para utilização das ferramentas do geoprocessamento e sensoriamento remoto com destaque aos princípios básicos de Banco de Dados, Cartografia digital e CAD, poderosos instrumentos de análise ambiental. Serão apresentados os princípios de operação de Sistemas de Posicionamento Global, Sensoriamento Remoto Aplicado aos Recursos Naturais e Geostatística. Para a integração dos conhecimentos básicos serão utilizados Sistemas de Informação Geográfica e elaboração de projeto ambiental. Serão produzidos mapas topográficos e fotos ortorectificadas com usos de drones.

Bases Científico-Tecnológicas (Conteúdos)

1. Cartografia Digital e Geodésia
 1.1. Introdução à cartografia
 1.2. Representações cartográficas
 1.2.1. Escalas
 1.2.2. Projeções cartográficas
 1.2.3. Cartas e mapas
 1.3. Mapas Temáticos Digitais.
 1.4. Criação de shapefile e vetorização de Mapas
 1.5. Importação e exportação para DXF ou DWG (Autocad)

2. Sistemas de Posicionamento Global
 2.1. Definições, conceitos e equipamentos
 2.2. Principais Sistemas em operação
 2.3. Uso e Técnicas de posicionamento
 2.4. Georreferenciamento de áreas, cartas, mapas, imagens do Google
 2.5. Geração de mapas temáticos.

3. Banco de Dados Espaciais
 3.1. Tipo de Arquivos
 3.2. Informação e organização dos dados
 3.2.1. Classificação dos dados
 3.2.2. Confecção de Banco de Dados
 3.2.3. Consulta ao banco de dados
 3.3. Elaboração de Banco de Dados.

4. Sensoriamento Remoto
 4.1. Conceitos Básicos e Definições acerca de Sensoriamento Remoto
 4.2. Princípios Físicos
 4.3. Diferenças dos Sistemas Sensores mais Importantes. Resoluções spectral, especial e temporal
 4.4. Aquisição de Imagens
 4.5. Composição Colorida
 4.6. Processamento Digital de Imagens (Modelo hidrologicos, modelo digital do terreno, curvas de nível, mapas de declividade, etc)
5. Sistema de Informação Geográfica (SIG)
 5.1. Álgebra de Mapas
 5.2. Operações sobre Geocampos
 5.3. Elaboração de mapas para uso em SIG
 5.4. Elaboração de mapas bases
 5.5. Confecção de mapas interpretativos utilizando SIG
 5.6. Integração de informações geográficas

6. Geoprocessamento e introdução à Geoestatística
 6.1. Análise estatística multivariada (Análise de Componentes principais, Análises de agrupamentos, etc)
 6.2. Correlações
 6.3. Interpolações
 6.5.1. Krigagem e Cokrigagem
 6.5.2. Inverso de do peso da distância
 6.5.3. Mínima Curvatura
 6.4. Mapas de isolinhas e outras representações espaciais

7. Mapeamento com Drones
 7.1. Princípios dos veículos aéreos não transportados (Drones)
 7.2. Planejamento de vôo/Missão
 7.3. Pilotagem
 7.4. Captura dos dados
 7.5. Processamento das Imagens
 7.6. Geração de produtos como mapa topográficos, fotos ortorretificadas, curvas de nível, etc.

Procedimentos Metodológicos
- Aulas expositivas/dialogadas;
- Aulas práticas com uso do Software ArcGis 10.5 ou QGIS
- Aulas práticas de campo com GPS Convencional ou aplicativos similares

Recursos Didáticos
- Quadro branco, pincel, computadores, TV e projetor de multimídia

Avaliação
- Avaliação continuada de todas atividades práticas com uso do ArcGis 10.5 com exercícios no final de cada 6 aulas
- Provas escritas
- Seminários Técnicos
- Aulas práticas com uso de GPS (Convencional e celulares) e outros aplicativos para uso em campo.

Bibliografia Básica
Bibliografia Complementar

<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>ESA.0035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>Mecânica dos Solos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga-Horária:</td>
<td>60h (80h/a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-Requisito(s):</th>
<th>Geologia e Solos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de créditos:</td>
<td>4</td>
</tr>
</tbody>
</table>

EMENTA

PROGRAMA

Objetivos

Fornecer conhecimentos básicos dos vários tipos de solos, seus índices e suas propriedades físicas e mecânicas com vistas à interpretação e solução dos problemas de Engenharia

Bases Científico-Tecnológicas (Conteúdos)

2. Estrutura e Propriedades das Partícula Sólidas.
3. Análise e Classificação Granulométrica dos Solos.
4. Índices Físicos do Solo.
5. Plasticidade e Consistência dos Solos

Procedimentos Metodológicos

Aulas expositivas / Procedimentos de ensaios em Laboratório

Recursos Didáticos

Lousa, pincel marcador, computador, softwares de computação e projetor multimídia.

Avaliação

Avaliação escrita sobre conteúdos teóricos.
Elaboração de trabalho em grupo sobre a aplicação prática dos conteúdos.
Avaliação do desempenho em laboratório

Bibliografia Básica

Curso: Engenharia Sanitária e Ambiental
Código: ESA.0036
Disciplina: Materiais de Construção
Carga-Horária: 60h (80h/a)
Pré-Requisito(s): Ciência e Tecnologia dos Materiais
Número de créditos: 4

EMENTA

PROGRAMA
Objetivos
Capacitar o aluno a correlacionar estrutura, processamento e propriedades de materiais, habilitando-o tecnicamente a selecionar materiais em função das solicitações de usos associados às demandas de engenharia sanitária e ambiental.
Capacitar o aluno a identificar o material mais adequado para aplicação nos diferentes usos associados às especificidades da engenharia sanitária e ambiental.

Bases Científico-Tecnológicas (Conteúdos)
1. Introdução à ciência dos materiais: revisão sobre ligações químicas; correlação entre ligações químicas e propriedades dos materiais; identificação de propriedades e solicitações de materiais de construção civil aplicados à engenharia sanitária e ambiental; propriedades mecânicas, térmicas, elétricas dos materiais.
2. Pedras Naturais (rochas): Conceito, classificação, aplicação, processo de obtenção e composição, características e propriedades físicas e químicas.
3. Cerâmicas: Conceito, classificação, aplicação, processo de obtenção e composição, características e propriedades físicas e químicas.
4. Vidros: Conceito, classificação, aplicação, processo de obtenção e composição, características e propriedades físicas e químicas.
5. Polímeros: Conceito, classificação, aplicação, processo de obtenção e composição, características e propriedades físicas e químicas.
6. Materiais Betuminosos: Conceito, classificação, aplicação, processo de obtenção e composição, características e propriedades físicas e químicas.
7. Madeiras: Conceito, classificação, aplicação, processo de obtenção e composição, características e propriedades físicas e químicas.
8. Metais: Conceito, classificação, aplicação, processo de obtenção e composição, características e propriedades físicas e químicas.
9. Tintas e vernizes: Conceito, classificação, aplicação, processo de obtenção e composição, características e propriedades físicas e químicas.
11. Normatização: Conceito, finalidade, tipos e entidades normativas.

Procedimentos Metodológicos
- Aulas expositivas/dialogadas
- Atividades práticas

117
- Visitas técnicas.

Reursos Didáticos
- Lousa, pincel marcador, computador e projetor multimídia.

Avaliação
- Provas escritas
- Listas de exercícios
- Seminários

Bibliografia Básica
 AMBROZEWICZ, P. H. L. Materiais de Construção. Normas, Especificações, Aplicação e Ensaios de Laboratório. 1ª ed. Editora PINI.

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0012
Disciplina: Microbiologia Sanitária e Ambiental
Carga-Horária: 60h (80h/a)
Pré-Requisito(s): Ecologia e Ciências Ambientais
Número de créditos: 4

EMENTA
Introdução; Microrganismos de interesse sanitário e ambiental; Controle microbiano; Microrganismos envolvidos no tratamento de resíduos; Doenças microbianas de veiculação ambiental; Coleta e preservação de amostras microbiológicas; Procedimentos laboratoriais de identificação e contagem de microrganismos; Padrões microbiológicos de qualidade ambiental.

PROGRAMA

<table>
<thead>
<tr>
<th>Objetivos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Descrever os principais acontecimentos que marcarem o surgimento e a evolução da Microbiologia como ciência.</td>
</tr>
<tr>
<td>• Caracterizar os principais grupos de indicadores microbiológicos de qualidade Sanitária e Ambiental.</td>
</tr>
<tr>
<td>• Comparar a eficiência dos diferentes métodos e técnicas de desinfecção e esterilização.</td>
</tr>
<tr>
<td>• Compreender a importância dos microrganismos nos processos de tratamento de efluentes e resíduos sólidos.</td>
</tr>
<tr>
<td>• Conhecer as formas de transmissão e prevenção das principais doenças veiculadas pelo ar, água e solo.</td>
</tr>
<tr>
<td>• Planejar e executar análises microbiológicas de solo, ar, água e efluentes.</td>
</tr>
<tr>
<td>• Interpretar, com base na legislação Sanitária e Ambiental vigentes, os resultados obtidos nas análises laboratoriais.</td>
</tr>
</tbody>
</table>

Bases Científico-Tecnológicas (Conteúdos)

1. Introdução
 a. Histórico
 b. Conceitos básicos
 c. Áreas de aplicação na atualidade

2. Microrganismos de interesse sanitário e ambiental
 a. Principais características dos vírus, bactérias, fungos, protozoários e algas
 b. Microrganismos indicadores de poluição

3. Controle microbiano
 a. Procedimentos básicos de assepsia e antissepsia
 b. Métodos físicos e químicos de desinfecção e esterilização
 c. Comparação de eficiência das técnicas utilizadas

4. Microrganismos envolvidos no tratamento de resíduos
 a. Tratamento de águas residuárias
 b. Compostagem de resíduos sólidos
 c. Biorremediação de solos contaminados

5. Doenças microbianas de veiculação ambiental
 a. Conceitos básicos sobre doenças transmissíveis
 b. Principais doenças veiculadas pelo ar, água e solo
 c. Ações profiláticas de saneamento

6. Coleta e preservação de amostras microbiológicas
 a. Plano de amostragem
 b. Técnicas de coleta e preservação de amostras

7. Procedimentos laboratoriais de identificação e contagem de microrganismos
 a. Normas básicas de segurança em laboratórios
 b. Técnica de tubos múltiplos
 c. Técnica da membrana filtrante
 d. Método da Presença/Ausência
 e. Contagem Padrão em Placa
8. Padrões microbiológicos de qualidade ambiental
 a. Principais dispositivos legais
 b. Água para abastecimento
 c. Balneabilidade
 d. Emissões atmosféricas
 e. Esgotos brutos e tratados
 f. Reuso de águas
 g. Resíduos sólidos

Procedimentos Metodológicos
- Aulas expositivas.
- Leitura e discussão de textos.
- Aulas práticas em laboratório.
- Coletas externas de amostras.
- Resolução de estudos dirigidos.
- Elaboração e apresentação de seminários.
- Elaboração de um relatório final de atividades práticas.

Recursos Didáticos
- Quadro branco, pincel e projetor de multimídia; instalações laboratoriais.

Avaliação
- Prova escrita.
- Discussões em sala de aula.
- Atividades individuais e em grupo.
- Participação nas aulas práticas em laboratório.
- Apresentação dos seminários.
- Relatório final das atividades práticas.

Bibliografia Básica

Bibliografia Complementar

5. Von Sperling, M.; Coleção Princípios do tratamento biológico de águas residuárias, vols. 1, 2, 3, 4, 5; 2ª edição, Belo Horizonte, 2002.
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0010

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>Cálculo Numérico</th>
<th>Carga-Horária:</th>
<th>60h (80h/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-Requisito(s):</td>
<td>Resistência dos Materiais, Fenômenos dos Transportes</td>
<td>Número de créditos:</td>
<td>4</td>
</tr>
</tbody>
</table>

EMENTA

PROGRAMA

Objetivos

- Introduzir o aluno na área da Análise Numérica e do Cálculo Numérico, capacitando-o a analisar e aplicar algoritmos numéricos em problemas reais, codificando-os em uma linguagem de alto nível a fim de resolver problemas em engenharia.

Bases Científico-Tecnológicas (Conteúdos)

1. Introdução aos Erros
 1.1. Conversão de números inteiros e fracionários decimal binário; Aritmética de Ponto Flutuante; Análise de erros nas operações aritmética de ponto flutuante.
2. Teorema de Taylor
3. Zeros de Funções
 3.1. Método de Bisseção; Método de Falsa Posição; Método Interativo Linear; Método de Newton – Raphson; Método da Secante, Método Especial para raízes de equações polinomiais.
4. Resolução de Sistemas Lineares
 4.1. Métodos Diretos: Métodos de Eliminação de Gauss, Fatoração LU;
5. Resolução de sistemas não lineares:
 5.1. Método de Newton.
6. Interpolação
 6.1. Interpolação Polinomial: Forma de Lagrange para o polinômio interpolador, Forma de Newton para o polinômio interpolador, Forma de Newton-Gregory para o polinômio interpolador; Estudo do Erro na interpolação;
 6.2. Interpolação Inversa;
 6.3. Estudo sobre a escolha do polinômio interpolado;
 6.4. Fenômeno de Runge;
 6.5. Funções Spline (linear) em interpolação.
7. Integração Numérica
 7.1. Fórmula de Newton-Cotes; Regra dos Trapézios; Regra de Simpson; Estudo dos Erros
8. Soluções Numéricas de Equações Diferenciais Ordinárias

Procedimentos Metodológicos

- Aulas expositivas/dialogadas;
- Aulas práticas no Laboratório de informática;
- Listas de exercícios.

Recursos Didáticos

- Quadro branco, pincel, computadores e projetor de multimídia

Avaliação

- Provas escritas, Relatórios de atividades individuais e em grupo, Algoritmos de análise numérica

Bibliografia Básica

Bibliografia Complementar

Software(s) de Apoio:

- Software para programação de métodos numéricos e simulação de sistemas lineares.
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0013

Disciplina: Hidráulica e Hidrotécnica
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Fenômenos dos Transportes
Número de créditos: 4

EMENTA
Princípios de Hidrostática e Hidrodinâmica; Condutos Livres; Condutos Forçados; Movimento de fluidos perfeitos.

PROGRAMA

Objetivos
- Dimensionar condutos livres;
- Dimencionar condutos forçados (Tubulações);
- Medir vazões em condutos livres e forçados;
- Dimensionar sistemas de bombeamento;
- Dimensionar estações elevatórias de água e esgoto

Bases Científico-Tecnológicas (Conteúdos)
- Vazão e descarga;
- classificação dos movimentos;
- Regime de escoamento;
- Perda de carga;
- Fórmula Universal;
- Formula de Chêzi;
- Formula de Hazen-Willians.
- Hidrometria:
- Medidas de vazão;
- Medidas em condutos livres e forçados

Procedimentos Metodológicos
- Aulas expositivas/dialogadas
- Atividades práticas
- Visitas técnicas.

Recursos Didáticos
- Lousa, pincel marcador, computador e projetor multimídia.

Avaliação
- Provas escritas
- Listas de exercícios
- Seminários

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: CIV.0012

Disciplina: Eletrotécnica Básica
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Fenômenos dos transportes
Número de créditos: 4

EMENTA

PROGRAMA
Objetivos
Fazer com que o estudante de engenharia entenda os princípios básicos utilizados na resolução e análise dos circuitos de corrente contínua e alternada, saiba fazer correção de fator de potência e entenda o funcionamento das máquinas elétricas (motores, gerador e transformadores). Além disso, deve adquirir conhecimentos sobre instalações elétricas de baixa tensão.

Bases Científico-Tecnológicas (Conteúdos)
8. Proteção de sistemas elétricos: Dispositivos de proteção, Fusível, disjuntores(DTM, DR).

Procedimentos Metodológicos
- Aulas expositivas/dialogadas;
- Aulas práticas em laboratório;
- Resolução de problemas.

Recursos Didáticos
Lousa, pincel marcador, computador, projetor multimídia. Laboratório de Instalações Elétricas.

Avaliação
- Provas escritas;
- Listas de exercícios;
- Práticas em laboratório.

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0014

| Disciplina: | Análise de águas e efluentes | Carga-Horária: 90h (120h/a) |
| Pré-Requisito(s): | Microbiologia Sanitária e Ambiental | Número de créditos: 6 |

EMENTA

A água na natureza e como utilizada na indústria, efluentes líquidos industriais, coleta e preservação de amostras de água e de efluentes, Análises químicas, Análises Físico-químicas de águas e efluentes, Parâmetros Físico-químicos, Legislação. Dosagem dos principais constituintes e Métodos Analíticos de avaliação e controle da qualidade dos resultados.

PROGRAMA

Objetivos

Realizar os procedimentos práticos laboratoriais em amostras de água e efluentes, interpretando os resultados de acordo com os padrões preconizados em legislação;
Criar habilidade no aluno para o manuseio da instrumentação analítica básica;
Realizar com segurança, coletas de amostras de líquidos e seguir os procedimentos por diferentes técnicas analíticas;
Executar a interpretação de dados conforme a exigência da legislação e normas técnicas;
Realizar análises físico-químicas de água e efluentes e relacionar com sua qualidade ambiental.

Bases Científico-Tecnológicas (Conteúdos)

1. Introdução ao laboratório de análises
2. Produtos de laboratório: vidrarias, equipamentos, reagentes, soluções e água de laboratório.
3. Qualidade de água e efluentes
4. Substâncias presentes nas águas naturais e impurezas.
5. Legislação
7. Índices de qualidade das águas.
8. Interpretação de resultados de análises físico-químicas para elaboração de laudos de qualidade de águas conforme a exigência da legislação e normas técnicas
9. Distribuição de frequência Amostragem e preparação de amostras para análises.
10. Introdução
11. Característica do material
12. Amostras e Tipo de amostras
13. Coleta de amostra de água e efluentes.
15. Análises físico-químicas de águas e Efluentes
17. Determinações de parâmetros pelo método gravimétrico: Sólidos existentes na água: sólidos totais, sólidos totais dissolvidos, sólidos suspensos; óleos e graxas.
18. Determinações de parâmetros pelo método titulométrico: Alcalinidade, cloreto, dureza total, dureza de cálcio, oxigênio dissolvido (OD), demanda bioquímica de oxigênio (DBO), demanda química de oxigênio (DQO), acidez.

Procedimentos Metodológicos

Aulas teóricas conduzidas de forma expositiva, utilizando quadro e projetor de slides;
Orientação e direcionamento para pesquisa e consulta da literatura técnica especializada;
Realização de aulas práticas no laboratório;
Elaboração de projetos técnicos integralizando a teoria com a prática.
<table>
<thead>
<tr>
<th>Recursos Didáticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadro branco, pincel e projetor de multimídia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Avaliação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaliações escritas;</td>
</tr>
<tr>
<td>Discussões de artigos;</td>
</tr>
<tr>
<td>Trabalhos individuais e em grupo (listas de exercícios, pesquisas, seminários);</td>
</tr>
<tr>
<td>O processo de avaliação é contínuo e cumulativo;</td>
</tr>
<tr>
<td>O resultado final será composto do desempenho geral do aluno.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bibliografia Básica</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bibliografia Complementar</th>
</tr>
</thead>
</table>
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0032
Disciplina: Direito ambiental
Carga-Horária: 60h (80h/a)
Pré-Requisito(s):
Número de créditos: 4

EMENTA

PROGRAMA

Objetivos

• Conhecer os princípios que regem a normatização da proteção ambiental no Brasil e os instrumentos jurídicos ao alcance do cidadão na defesa do meio ambiente.
• Aplicar os seus conhecimentos de forma a tomar atitudes que adéquem a prática profissional ao ordenamento jurídico ambiental, qualquer que seja o seu ambiente de trabalho.

Bases Científico-Tecnológicas (Conteúdos)

1. DIREITO AMBIENTAL INTRODUÇÃO:
 1.1. Conceitos Jurídicos Básicos: Estrutura do Poder Judiciário brasileiro, Jurisdição, competência, hierarquia das leis
 1.2. Evolução do pensamento jurídico ecológico: Tratados, Protocolos e Constituições
 1.3. Princípios do Direito Ambiental
2. DIREITO AMBIENTAL NA CONSTITUIÇÃO BRASILEIRA
 2.1. O art. 225 da CF 1988
3. POLÍTICA NACIONAL DO MEIO AMBIENTE
 3.1. Lei 6938/ 81 e atualizações
4. POLÍTICA ESTADUAL DO MEIO AMBIENTE
 4.1. Lei 272/04 RN
5. LICENCIAMENTO AMBIENTAL
 5.1. O Poder de Polícia
 5.2. Sistema de licenciamento, outorga das licenças,
 5.3. Licenciamento ambiental: Resoluções do CONAMA
6. AVALIAÇÃO de IMPACTO AMBIENTAL
 6.1. Conceito de Impacto Ambiental
 6.2. Tipos de Estudos Ambientais
8. CRIMES CONTRA O MEIO AMBIENTE
 8.1. A Responsabilidade Penal Ambiental : Pessoas físicas e Pessoas Jurídicas
 8.2. A Lei 9605/98
9. LEIS ESPARSAS
 9.1. OGMs, Águas, Petróleo, Mineração, Política Nacional de Resíduos sólidos, Biodiversidade, SNUC.
 9.2. Padrões Ambientais

Procedimentos Metodológicos

a. As aulas serão expositivas dialogadas, estimulando a participação e o senso crítico dos alunos. Utilização de textos e estudos de caso.

Recursos Didáticos

• Projetor de multimídia, quadro branco, filmes, Legislação pertinente.

Avaliação

• Participação em Debates; Avaliações escrita; Trabalhos em grupo e individual; Seminários.
Bibliografia Básica

Bibliografia Complementar
| Curso: | Engenharia Sanitária e Ambiental
Código: ESA.0015 |
|--------|------------------|
| Disciplina: | Sistemas de Abastecimento de Água
Carga-Horária: 60h (80h/a) |
| Pré-Requisito(s): | Hidráulica e Hidrotécnica
Número de créditos: 4 |

EMENTA

Conceitos básicos e unidades constituintes dos sistemas de abastecimento de água. Parâmetros de projeto, população e vazão de dimensionamento, hidráulica de condutos forçados. Mananciais, captações, adutoras e estações elevatórias, reservatórios, rede de distribuição e ramal predial.

PROGRAMA

Objetivos

Conhecer, descrever e dimensionar as unidades, acessórios e obras especiais que compõem um sistema de abastecimento de água utilizando os principais parâmetros de dimensionamento.

Bases Científico-Tecnológicas (Conteúdos)

1. **INTRODUÇÃO**
 - Definições e objetivos
 - Importância de um SAA
 - Unidades do sistema de abastecimento de água

2. **PARÂMETROS E POPULAÇÃO DE PROJETO**
 - Taxas de crescimento populacional e estimativa da população de projeto
 - Estimativa de vazões de dimensionamento (consumo per-capita, coeficientes de reforço)

3. **MANANCIAL E CAPTAÇÃO**
 - Manancial superficial e subterrâneo
 - Principais tipos de captação de água
 - Proteção sanitária dos mananciais

4. **ADUÇÃO**
 - Adutoras de água bruta e tratada
 - Adutoras por gravidade e por recalque
 - Adutoras em conduto livre e forçado
 - Hidráulica aplicada a SAA
 - Dimensionamento de adutoras (gravidade e recalque)

5. **ESTAÇÕES ELEVATÓRIAS**
 - Bombas centrífugas
 - Perdas de carga e altura manométrica
 - Curvas de bombas
 - Dimensionamento de estações elevatórias

6. **RESERVAÇÃO**
 - Tipos de reservatórios
 - Dimensionamento de reservatórios

7. **REDE DE DISTRIBUIÇÃO DE ÁGUA**
 - Tipos de traçado
 - Unidades constituintes e órgãos acessórios
 - Dimensionamento de redes (métodos dos seccionamentos fictícios e Hardy-Cross)

Procedimentos Metodológicos

Aulas expositivas, visitas técnicas (aulas de campo), desenvolvimento de cálculos em computador utilizando softwares como planilha eletrônica, Autocad.

Recursos Didáticos

- Quadro branco, pincel e projetor de multimídia, softwares de engenharia, computador

Avaliação

- Provas escritas teóricas e numéricas
- Atividades individuais e em grupo de pesquisa e desenvolvimento de cálculos de dimensionamento, trabalhando com dados de SAA em escala real ou fictícios, apresentação de seminários.
Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0020

Disciplina: Hidrologia Aplicada
Carga-Horária: 60h (80h/a)
Pré-Requisito(s): Hidráulica e Hidrotécnica
Número de créditos: 4

EMENTA
Proporcionar as bases científicas e tecnológicas pertinentes ao conhecimento sobre o ciclo hidrológico e seus componentes, analisar as características de uma bacia hidrográfica e identificar os instrumentos de medição dos elementos hidrológicos.

PROGRAMA
Objetivos
Buscar desenvolver habilidades e competências para aferir os fatores climáticos atuantes em uma bacia hidrográfica, determinar o balanço hidrológico de uma bacia hidrográfica, delimitar e caracterizar fisicamente uma bacia hidrográfica e aplicar técnicas de previsão de enchentes e controle de estiagens.

Bases Científico-Tecnológicas (Conteúdos)
- Ciclo hidrológico
- Balanço hídrico
- Bacia hidrográfica
- Elementos meteorológicos
- Precipitação
- Escoamento superficial
- Infiltração
- Evaporação
- Transpiração
- Previsão e controle de enchentes
- Controle dos efeitos das estiagens

Procedimentos Metodológicos
Aulas expositivas, visitas técnicas (aulas de campo), desenvolvimento de cálculos em computador utilizando softwares como planilha eletrônica, Autocad.

Recursos Didáticos
Quadro branco, pincel e projetor de multimídia, softwares de engenharia, computador

Avaliação
Prova escrita
Trabalho em Grupo – elaboração de um projeto
Exercícios
Presença e participação nas atividades propostas.

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0038

Disciplina: Saúde e Segurança do Trabalho
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): Nenhum
Número de créditos: 2

EMENTA

Introdução à segurança no trabalho, Equipamento de Proteção, Comissão Interna de prevenção de Acidentes no trabalho (CIPA), Proteção contra incêndio, Segurança em trabalhos com máquinas, riscos profissionais, PPRA/PCMSO, Espaço confinado, Segurança na manutenção, Procedimentos de segurança.

PROGRAMA

Objetivos

Desenvolver a cultura prevencionista na área de Saúde e Segurança do trabalho.

Bases Científico-Tecnológicas (Conteúdos)

- **Introdução à segurança no trabalho**
 Conceito de segurança e acidentes do trabalho.
 Causas dos acidentes.
 Custos dos acidentes.

- **1. Equipamentos de proteção**
 Equipamentos de proteção Individual (EPI)
 Equipamentos de Proteção coletiva (EPC)

- **2. Proteção contra incêndio.**
 Princípios básicos do fogo.
 Agentes extintores.
 Métodos de Extinção
 Instalações contra Incêndio

- **3. Comissão Interna de prevenção de Acidentes no trabalho (CIPA)**
 Objetivo
 Constituição
 Organização
 Atribuições
 Funcionamento

- **4. Segurança em trabalhos com máquinas**
 Fundamentos de dispositivos de segurança para máquinas

- **5. Riscos profissionais**
 Riscos de operações (agentes de acidentes/mecânicos)
 Riscos de ambiente (agentes físicos, químicos, biológicos, ergonômicos)
 PPRA/PCMSO
 Espaço Confinado (NR -33)
 Segurança na manutenção
 Procedimentos de segurança

Procedimentos Metodológicos

as presenciais expositivas, leituras, reflexões e debates sobre as referencias bibliográficas, textos complementares; Fichamentos.

Recursos Didáticos

- Projetor de multimídia, quadro branco, filmes.

Avaliação

- Prova individual;
- Avaliação do desempenho e participação nas aulas;
- Trabalhos individuais ou em grupos;
- Seminários a partir da discussão de textos técnicos específicos.

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ESA.0018

Disciplina: Planejamento Urbano e Ambiental
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Sensoriamento Remoto e Geoprocessamento Aplicado
Número de créditos: 4

EMENTA
Planejamento e desenvolvimento sustentável. Tipos de planejamento; planejamento ambiental: conceito, prática e instrumentos, variáveis, indicadores e índices ambientais, participação pública e educação no planejamento ambiental. Planejamento Ambiental no espaço urbano, rural e em áreas verdes.

PROGRAMA
Objetivos
- Compreender a atividade de planejamento territorial através da aplicação dos instrumentos de política urbana e política ambiental.
- Interpretar padrões de uso e ocupação do solo
- Elaborar leitura da estrutura territorial e dos condicionantes de uso e ocupação do solo
- Aplicar método do Zoneamento Ecológico Econômico - ZEE
- Aplicar método do Planejamento Municipal Integrado
- Capacitar para análise das interferências socioeconômicas ao meio ambiente em elaboração de um plano de intervenção contendo as diretrizes de planejamento e o desenho de remodelação ou requalificação para uma área em estudo

Bases Científico-Tecnológicas (Conteúdos)
1. Síntese histórica da evolução da cidades
2. Síntese histórica da evolução do planejamento de cidades
3. Conceitos, temas e princípios do planejamento territorial
4. Abordagens metodológicas acerca das tipologias de planejamento
5. Aspectos legais e constitucionais
6. Instrumentos de planejamento territorial
7. Zoneamento ecológico-econômico (ZEE)
8. Planejamento municipal integrado

Procedimentos Metodológicos
- Aulas de vídeo, expositivas e de campo; Seminários; Trabalhos de pesquisa bibliográfica e práticos.

Recursos Didáticos
- Projetor de multimídia, quadro branco, filmes, programas computacionais.

Avaliação
- A avaliação é continua e leva em conta a frequência do aluno nas aulas que são expositivas interacionais associadas a atividades práticas, participação nas atividades propostas e avaliação escrita.

Bibliografia Básica

<table>
<thead>
<tr>
<th>Bibliografia Complementar</th>
</tr>
</thead>
</table>

Software(s) de Apoio:
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0017

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>Poluição Ambiental I</th>
<th>Carga-Horária:</th>
<th>60h (80h/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-Requisito(s):</td>
<td>Análise de águas e efluentes, Direito ambiental</td>
<td>Número de créditos:</td>
<td>4</td>
</tr>
</tbody>
</table>

EMENTA

PROGRAMA

Objetivos
- Abordar os efeitos da poluição em sistemas aquáticos, discutindo principalmente causas, consequências.

Bases Científico-Tecnológicas (Conteúdos)

1. **INTRODUÇÃO**
 - a. Raízes dos problemas ambientais
 - b. Saneamento ambiental

2. **POLUIÇÃO DAS ÁGUAS SUPERFICIAIS E SUBTERRÂNEAS**
 - a. Características e propriedades das águas naturais e residuárias
 - b. Padrões de qualidade de águas (CONAMA 357 e 430)
 - c. Padrões de potabilidade
 - d. Principais fontes de poluição das águas
 - e. Consequências da poluição aquática
 - f. Indicadores e índices de qualidade da água (IQA)

3. **AUTODEPURAÇÃO DOS CORPOS AQUÁTICOS E EUTROFIZAÇÃO**
 - a. Consumo de oxigênio dissolvido
 - b. Curva de autodepuração: Oxigênio dissolvido
 - c. Demanda de oxigênio (DBO, DQO, COT)
 - d. Cinética de degradação (taxas de degradação e decaimento)
 - e. Eutrofização: Causas, Consequências e Controle
 - f. Indicadores e Índices de Eutrofização (IET)

4. **ESTUDO DA DISPERSÃO DE POLUENTES**
 - a. Quantificação de cargas poluidoras e balanço de massa
 - b. Efiiciências de processos e unidades de tratamento
 - c. Análises de reatores (tipos de reatores): Reator de mistura completa, Reator de batelada e de fluxo pistão
 - d. Regimes hidráulicos: fluxo contínuo e não contínuo

Procedimentos Metodológicos

- As aulas serão expositivas, visitas técnicas e estudos de caso

Recursos Didáticos
- Projetor de multimídia, quadro branco, filmes, internet

Avaliação
- Avaliações escritas, trabalhos, seminários

Bibliografia Básica

Bibliografia Complementar

Software(s) de Apoio:

HAC-RES, Modflow, EPANET
<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>ESA.0037</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>Economia ambiental</th>
<th>Carga-Horária:</th>
<th>30h (40h/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-Requisito(s):</td>
<td>Direito ambiental</td>
<td>Número de créditos:</td>
<td>2</td>
</tr>
</tbody>
</table>

EMENTA

Fundamentos e conceitos microeconômicos; Valoração ambiental; Benefício líquido social do reaproveitamento; Instrumentos Econômicos: estatísticas ambientais e sua incorporação na gestão de recursos naturais.

PROGRAMA

Objetivos

- Compreender os conceitos microeconômicos;
- Identificar a valoração ambiental;
- Identificar o benefício social do reaproveitamento;
- Aplicar instrumentos econômicos

Bases Científico-Tecnológicas (Conteúdos)

1. Crescimento econômico, inclusão social e conservação ambiental: conceitos de valor e capital na teoria econômica e sua relação com recursos naturais.
 1.1 O significado de crescimento econômico, geração de valor e emprego.
 1.2 Economia verde, inclusão ou exclusão ambiental.
 1.3 Inovação ambiental e energética como solução para o crescimento com inclusão e conservação.
2. Fundamentos e conceitos microeconômicos
 2.1 Equilíbrio de mercado
 2.2 Bens Públicos e externalidades
 2.3 Valorando variações de bem-estar
3. Valoração ambiental
 3.1 Natureza e classificação dos valores ambientais
 3.2 Fundamentos teóricos e metodológicos da valoração econômica do meio ambiente
 3.3 Principais vieses estimativos dos métodos de valoração ambiental
4. Benefício líquido social do reaproveitamento
5. Instrumentos econômicos
 5.1 A natureza do IE
 5.2 Os IEs precificados
 5.3 Criação de Mercado de direitos
 5.4 O dividendo duplo
 5.5 Uso dos instrumentos econômicos no Brasil

Procedimentos Metodológicos

- As aulas serão expositivas, dialogadas e estudos de caso

Recursos Didáticos

- Quadro branco, pincel e projector multimidia

Avaliação

- Avaliações escritas, atividades em grupo e individuais, estudos de caso.

Bibliografia Básica

Bibliografia Complementar

Artigos e periódicos com temas específicos da disciplina

Software(s) de Apoio:
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0020

Disciplina: Tratamento de Água para abastecimento
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Sistema de Abastecimento de Água
Número de créditos: 4

EMENTA

Características físicas, químicas e biológicas das águas naturais; qualidade e tecnologias de tratamento. Padrões de qualidade da água potável. Mistura rápida e coagulação, mistura lenta e floculação, sedimentação, filtração (filtração direta e filtração em múltiplas etapas e em membranas), desinfecção e oxidação, adsorção.

PROGRAMA

Objetivos

- Conhecer e associar características físicas, químicas e biológicas das águas naturais e tecnologias de tratamento.
- Conhecer, definir, escolher e dimensionar as unidades de uma Estação de Tratamento de Água visando sua potabilização.
- Discutir e opinar sobre aspectos qualitativos de águas de mananciais subterráneos e superficiais e tecnologias de tratamento;
- Conhecer e aplicar as características físicas, químicas e biológicas de águas e respectivos padrões de potabilidade de água;
- Identificar a influência de fatores técnicos, ambientais e econômicos no planejamento, operação e manutenção de ETA;
- Aplicar o conhecimento adquirido na proposição de processos e tecnologias de sistemas sustentáveis de tratamento de água.

Bases Científico-Tecnológicas (Conteúdos)

1. Características físicas, químicas e biológicas de águas, padrões de qualidade e potabilidade de água e de lançamento de efluentes (resíduos de ETA)
2. Processos e tecnologias de tratamento de águas
3. Parâmetros de projeto (dose, tempo de contato, gradiente de velocidade, taxas de filtração e decantação, velocidades)
4. Mistura rápida e coagulação
5. Mistura lenta e floculação
6. Sedimentação laminar e de alta taxa
7. Flotação por ar dissolvido
8. Filtração rápida, filtração direta e filtração em múltiplas etapas
9. Desinfecção e oxidação
10. Adsorção

Procedimentos Metodológicos

- As aulas serão expositivas, visitas técnicas, estudos de caso e análise de projetos

Recursos Didáticos

- Projetor de multimídia, quadro branco, filmes, internet

Avaliação

- Avaliações escritas, trabalhos, seminários, projetos.

Bibliografia Básica

<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>ESA.0022</td>
</tr>
<tr>
<td>Disciplina:</td>
<td>Gestão de Recursos Hídricos</td>
</tr>
<tr>
<td>Carga-Horária:</td>
<td>60h (80/a)</td>
</tr>
<tr>
<td>Pré-Requisito(s):</td>
<td>Hidrologia Aplicada</td>
</tr>
<tr>
<td>Número de créditos:</td>
<td>4</td>
</tr>
</tbody>
</table>

EMENTA

A Necessidade da Gestão dos Recursos Hídricos; Conceitos Básicos de Gestão dos Recursos Hídricos; Ciclo Hidrológico; Ciclo Hidroquímico e a Qualidade da Água; Água Subterrânea; Bacia Hidrográfica; Lagos; Variáveis hidrológicas; Balanço Hídrico; Princípios Orientadores da Gestão dos Recursos Hídricos; Instrumentos da Gestão dos Recursos Hídricos; Planejamento do Uso do Solo para a Proteção dos Recursos Hídricos

PROGRAMA

Objetivos

- Compreender os diversos motivos que levam à escassez dos recursos hídricos e, consequentemente, à necessidade de gestão dos recursos hídricos;
- Conhecer os conceitos básicos relacionados à gestão dos recursos hídricos;
- Conhecer e descrever o funcionamento dos principais sistemas hidrológicos;
- Compreender e descrever os princípios e instrumentos de Gestão que auxiliam no uso racional dos recursos hídricos.

Bases Científico-Tecnológicas (Conteúdos)

1. **A Necessidade da Gestão dos Recursos Hídricos**: distribuição das águas no mundo e os problemas de escassez; demanda e disponibilidade hídrica no Brasil; interdisciplinaridade; pressões sobre os recursos hídricos.
2. **Conceitos Básicos de Gestão dos Recursos Hídricos**: definições da água; gestão dos recursos hídricos; política dos recursos hídricos; planejamento dos recursos hídricos; gerenciamento de recursos hídricos; sistema de gerenciamento dos recursos hídricos.
3. **Ciclo Hidrológico**: peculiaridade dos recursos hídricos; introdução ao ciclo hidrológico; descrição geral do ciclo hidrológico em regiões sedimentares porosas; ciclos hidrológicos particulares.
4. **Ciclo Hidroquímico e a Qualidade da Água**: codificação hidroquímica do ciclo hidrológico; alterações na qualidade natural da água.
5. **Água Subterrânea**: porosidade; tipos de aquíferos e mapas de fluxo subterrâneo.
6. **Bacia Hidrográfica**: aspectos conceituais; bacias hidrográficas e bacias hidrogeológicas e escoamento superficial.
7. **Lagos**: tipos de lagos; interação das águas superficiais e subterrâneas e bacia hidrográfica e hidrogeológica de lagos.
8. **Variáveis hidrológicas**: precipitações; evaporação; evapotranspiração; infiltração e período de retorno.
9. **Balanço Hídrico**: equação geral; equações particulares e conceitos sobre disponibilidade hídrica.
10. **Princípios Orientadores da Gestão dos Recursos Hídricos**: água como um bem público; unidade básica da gestão dos recursos hídricos; usos múltiplos; valor econômico da água e gestão descentralizada e administrativa.
11. **Instrumentos da Gestão dos Recursos Hídricos**: Planos de recursos hídricos; Enquadramento dos corpos de água; Outorga dos recursos hídricos; cobrança do uso de recursos hídricos e Sistema de informações sobre recursos hídricos.
12. **Planejamento do Uso do Solo para a Proteção dos Recursos Hídricos**: o meio ambiente e as suas transformações; planos diretores municipais e o emprego das cartas de uso e ocupação do solo; processos e problemas associados aos recursos hídricos e metodologia do IPT na elaboração de cartas geotécnicas.

Procedimentos Metodológicos

- Aulas teóricas expositivas; Análise crítica de textos escolhidos; Trabalhos escritos; Seminários; Debates; Aulas externas; Pesquisa bibliográfica; Pesquisa de campo.
Recursos Didáticos
- Projetor multimídia, quadro branco, vídeos, textos.

Avaliação
- Provas de aproveitamento; Trabalhos realizados em grupo e individual; Participação nas discussões

Bibliografia Básica

Bibliografia Complementar

Software(s) de Apoio:
- Software Acquanet
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0019

Disciplina: Sistemas de Esgotamento Sanitário
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Planejamento Urbano e Ambiental, Poluição Ambiental I
Número de créditos: 4

EMENTA
Características dos esgotos sanitários. Tipos de sistemas de esgotamento sanitário. Unidades constituintes dos sistemas de esgotamento sanitário. Noções básicas sobre tratamento de esgotos sanitário.

PROGRAMA

Objetivos
Descrever todas as unidades que compõem um sistema de esgotamento sanitário destacando seus principais parâmetros de dimensionamento. Pré-dimensionar as unidades do sistema.

Bases Científico-Tecnológicas (Conteúdos)

1. INTRODUÇÃO
 a. Características dos esgotos
 b. Importância do sistema de esgotamento sanitário
 c. Tipos de sistemas de esgotamento sanitário

2. SISTEMAS INDIVIDUAIS
 a. Via seca (privadas)
 b. Via úmida (tanques sépticos)
 c. Saneamento ecológico
 d. Aproveitamento dos resíduos

3. SISTEMAS COLETIVOS
 a. Tipos de sistemas (unitário, separador, misto)
 b. Tipos de traçado (convencional, condominial)
 c. Ramais Prediais: tubulações e acessórios
 d. Rede Coletora: coletores secundários, coletores-tronco, poços de visita
 e. Métodos de dimensionamento de rede: convencional e condominial
 f. Interceptores: tubulações e acessórios
 g. Emissários: tubulações e acessórios
 h. Estações Elevatórias de esgotos

4. NOÇÕES DE TRATAMENTO DE ESGOTOS
 a. Classificação em função do processo, da eficiência e da disponibilidade de oxigênio
 b. Tratamento físico, químico e biológico
 c. Tratamento preliminar, primário, secundário e terciário
 d. Tratamento anaeróbio e aeróbio
 e. Tratamento de efluentes industriais
 f. Uso controlado e esgotos tratados

Procedimentos Metodológicos
- As aulas serão expositivas, visitas técnicas, estudos de caso e análise de projetos

Recursos Didáticos
- Projetor de multimídia, quadro branco, filmes, internet

Avaliação
- Avaliações escritas, trabalhos, seminários, projetos.

Bibliografia Básica
1. CASTRO, Alaor de Almeida. *Manual de saneamento e proteção ambiental para os municípios:*

Bibliografia Complementar

Software(s) de Apoio:
ELENTE

PROGRAMA
Objetivos
• Abordar os efeitos da poluição no solo e no ar, discutindo principalmente causas, consequências.

Bases Científico-Tecnológicas (Conteúdos)

1. POLUIÇÃO DO SOLO
 e. Características do solo de interesse ambiental
 f. Transporte de poluente no solo
 g. Fontes de poluição do solo
 h. Degradação do solo: Erosão, salinização e acidificação
 i. Padrões de qualidade do solo (CONAMA 420/2009)

2. POLUIÇÃO DO AR
 a. Características da atmosfera
 b. Fontes de Poluição do Ar
 c. Ar, atmosfera, clima e poluição
 d. Padrões de Qualidade do ar
 e. Danos à saúde
 f. Efeitos ambientais da poluição do ar: chuva ácida, efeito estufa, ilhas de calor, degradação da camada de ozônio, smog fotoquímico.
 g. Conceitos básicos de dispersão de poluentes atmosféricos

Procedimentos Metodológicos
• As aulas serão expositivas, visitas técnicas e estudos de caso

Recursos Didáticos
• Projetor de multimídia, quadro branco, filmes, internet

Avaliação
• Avaliações escritas, trabalhos, seminários

Bibliografia Básica

Bibliografia Complementar

Software(s) de Apoio:
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0039

Disciplina: Estratégias de Sustentabilidade para Organizações Produtivas
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Economia ambiental
Número de créditos: 4

EMENTA
Normalização; A Série ISO 14000; Compreensão da ISO 14001; Política Ambiental, Planejamento, Implementação e Operação, Verificação e Análise do Sistema de Gestão Ambiental estruturado na NBR ABNT ISO 14001:2015.

PROGRAMA

Objetivos
- Proporcionar aos alunos conhecimentos sobre os conceitos, a linguagem, os métodos e a utilidade de um sistema de gestão ambiental, considerado como uma estratégia para promover a sustentabilidade em organizações produtivas.
- Dominar os elementos necessários e características para implementação de um sistema de gestão ambiental estruturado na NBR ABNT ISO 14001:2015.
- Mostrar o uso de auditorias internas em situações específicas para operacionalização de um sistema de gestão ambiental;

Bases Científico-Tecnológicas (Conteúdos)
1. Inserção do Conceito de Sustentabilidade no Processo de Planejamento Corporativo
 1.1. Conceitos e Abordagens da Sustentabilidade em Organizações Produtivas
 1.2. Fatores indutores, Facilitadores e Barreiras para Sustentabilidade em Organizações Produtivas
2. Gestão de Stakeholders
 2.1. Responsabilidade Social Corporativa
 2.2. Normas Internacionais
 2.3. Engajamento de Stakeholders
 2.4. Balanço Social
 2.5. Relatórios de Sustentabilidade
3. Ferramentas de Gestão Ambiental com Foco em Produtos
 3.1. Análise do Ciclo de Vida de Produtos
 3.2. Pegada de Carbono
 3.3. Pegada da Água
 3.4. Ecodesign
 3.5. Rotulagem Ambiental
4. Ferramentas de Gestão Ambiental com Foco em Processos e Serviços
 4.1. Produção mais Limpa
 4.2. Logística Reversa
 4.3. Economia Circular
 4.4. Ecoeficiência
 4.5. Eficiência Energética

Procedimentos Metodológicos
- Aulas expositivas/dialogadas;
- Simulação de processos produtivos para inserção de práticas de sustentabilidade.
- Estudo de caso em empresas reais.

Recursos Didáticos
- Quadro branco, pincel e projetor de multimídia

Avaliação
- Provas escritas
- Relatórios de atividades individuais e em grupo
Relatório de estudo de caso em empresa real

<table>
<thead>
<tr>
<th>Bibliografia Básica</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMARAL, S. P. Sustentabilidade ambiental, social e econômica nas empresas: como entender, medir e relatar. São Paulo: Tocalino, 2005.</td>
</tr>
<tr>
<td>JÚNIOR VILELA, Alcir. Modelos e ferramentas de gestão ambiental: desafios e perspectiva para as organizações. São Paulo: SENAC-SP, 2006.</td>
</tr>
</tbody>
</table>
Curso: Engenharia Sanitária e Ambiental
Código: ENG.0017

Disciplina: Engenharia Econômica
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): Economia Ambiental
Número de créditos: 2

EMENTA
Introdução à Engenharia Econômica, Método do Valor Presente Líquido, Método do Valor Uniforme Líquido, Método da Taxa de Retorno, Método do Período de Recuperação, Modelos de Depreciação e Exaustão, Análise de Substituição de Equipamentos, Inflação e Estimativa de Custos, Análise de Sensibilidade.

PROGRAMA

Objetivos

• Proporcionar aos alunos conhecimentos sobre os conceitos, a linguagem, os métodos e a utilidade da Engenharia Econômica, considerada como uma ferramenta para ajudar a avaliar, comparar e decidir entre alternativas de investimento.

• Mostrar o uso da Engenharia Econômica em situações específicas de seleção de alternativas econômicas próprias à vida da empresa e à vida das pessoas.

Bases Científico-Tecnológicas (Conteúdos)

5. Introdução à Engenharia Econômica
 5.1. A função financeira na empresa
 5.2. As decisões financeiras da empresa
 5.3. A natureza da Engenharia Econômica
 5.4. Diagrama de fluxo de caixa
 5.5. Taxa nominal e taxa efetiva de juros em capitalização composta

6. Método do Valor Presente Líquido
 6.1. Tomada de decisões de investimento
 6.2. Taxa Mínima Aceitável (TMA) ou Taxa Mínima de Atratividade
 6.3. Natureza do Valor Presente Líquido
 6.4. Cálculo do Valor Presente Líquido
 6.5. Seleção da melhor alternativa pelo método do Valor Presente Líquido

7. Método do Valor Uniforme Líquido
 7.1. Natureza do Valor Uniforme Líquido
 7.2. Cálculo do Valor Uniforme Líquido
 7.3. Seleção da melhor alternativa pelo método do Valor Uniforme Líquido

8. Método da Taxa de Retorno
 8.1. Natureza da Taxa de Retorno (Taxa Interna de Retorno)
 8.2. Cálculo da Taxa de Retorno pelo método do Valor Presente Líquido
 8.3. Seleção da melhor alternativa pelo método da Taxa de Retorno
 8.4. As “armadilhas” da Taxa de Retorno

9. Método do Prazo de Recuperação (Payback)
 9.1. Natureza do Prazo de Recuperação
 9.2. Cálculo do Prazo de Recuperação
 9.3. Comparação de duas alternativas por vida de serviço - Histograma

10. Modelos de Depreciação
 10.1. Conceito de Depreciação
 10.2. Método de depreciação linear
 10.3. Outros métodos de depreciação
 10.4. Depreciação real ou de mercado
 10.5. Os efeitos da depreciação

11. Análise de Substituição de Equipamentos
 11.1. Natureza do problema de substituição
 11.2. Substituição de um equipamento por outro selecionado entre dois outros com vidas úteis iguais
11.3. Substituição de um equipamento existente por outro

12. Inflação e Estimativa de Custos
 12.1. Índices de inflação
 12.2. Taxa referencial de juros – Inflação e juros
 12.3. Cálculo do Valor Presente considerando a inflação
 12.4. Estimativa de custos

13. Análise de Sensibilidade
 13.1. O enfoque da Análise de Sensibilidade
 13.2. Determinação da sensibilidade das alternativas
 13.3. Sensibilidade de uma alternativa
 13.4. Sensibilidade de várias alternativas

Procedimentos Metodológicos
- Aulas expositivas/dialogadas;
- Listas de exercícios;
- Avaliação econômica de projetos;
- Simulação de processos; e
- Estudo de caso em empresas reais.

Recursos Didáticos
- Quadro branco, pincel e projetor de multimídia

Avaliação
- Provas escritas
- Relatórios de atividades individuais e em grupo
- Relatório de estudo de caso em empresa real

Bibliografia Básica
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0027

Disciplina: Sistemas de Drenagem Urbana
Carga-Horária: 60h (80h/a)

 Pré-Requisito(s): Gestão de Recursos Híricos
Número de créditos: 4

EMENTA

Proporcionar as bases científicas e tecnológicas pertinentes à compreensão dos sistemas de micro e macrodrenagem e à terminologia dos seus componentes, ao dimensionamento dos elementos constituintes da micro e macrodrenagem, à identificação dos elementos constituintes do sistema de drenagem urbana, conhecimento de técnicas de execução de sistemas de micro e macrodrenagem e ao conhecimento da legislação e das instituições ligadas ao controle dos impactos associados à drenagem urbana.

PROGRAMA

Objetivos

Desenvolver habilidades e competências para permitir que o profissional elabore projetos, execute a instalação, operação e manutenção sistemas de micro e macrodrenagem urbana.

Bases Científico-Tecnológicas (Conteúdos)

- Introdução à problemática da drenagem urbana
- Gestão Integrada das águas urbanas
- Medidas de controle das inundações
- Elementos de microdrenagem
- Defluvio superficial direto
- Dimensionamento de sargentas
- Dimensionamento de bocas coletoras
- Dimensionamento de galerias, planilhas de cálculo
- Projeto de microdrenagem
- Bueiros
- Macrodrenagem
- Planos de Drenagem Urbana

Procedimentos Metodológicos

- Aulas teórica/expositivas/dialogadas;
- Aulas de campo/visitas técnicas;
- Atividades práticas supervisionadas.

Recursos Didáticos

- Quadro branco, pincel e projetor de multimídia, apresentação de vídeos técnicos.

Avaliação

- Provas escritas.
- Atividades individuais e em grupo.
- Relatórios.
- Seminários.

Bibliografia Básica

EMENTA

PROGRAMA

Objetivos
- Conhecer os conceitos básicos relacionados ao tratamento dos efluentes domésticos;
- Conhecer as principais técnicas e os conceitos associados ao tratamento de efluentes industriais.
- Identificar a influência de fatores técnicos, ambientais e econômicos no planejamento, operação e manutenção de ETE;
- Aplicar o conhecimento adquirido na proposição de processos e tecnologias de sistemas sustentáveis de tratamento de efluentes.

Bases Científico-Tecnológicas (Conteúdos)

3. Alternativas para tratamento de águas residuárias.
4. Caracterização de águas residuárias.
5. Transferência de oxigênio.
6. Processos biológicos para tratamento de águas residuárias: Processos aeróbios, anaeróbios e combinados.
7. Processos químicos e físico-químicos para tratamento de águas residuárias. Desinfecção de águas residuárias.
8. Tratamento e disposição de lodos gerados em estações de tratamento de águas residuárias.
9. Caracterização e tratamento de efluentes industriais

Procedimentos Metodológicos
- Aulas teóricas expositivas; Análise crítica de textos escolhidos; Trabalhos escritos; Seminários; Debates; Aulas externas; Pesquisa bibliográfica; Pesquisa de campo.

Recursos Didáticos
- Projetor multimídia, quadro branco, vídeos, textos.

Avaliação
- Provas de aproveitamento; Trabalhos realizados em grupo e individual; Participação nas discussões

Bibliografia Básica

Bibliografia Complementar
CHERNICHARO, C. A. L. Pós-tratamento de efluentes de reatores anaeróbios.

Software(s) de Apoio:
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0024

Disciplina: Gestão e Controle de Emissões Atmosféricas
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Poluição Ambiental II
Número de créditos: 4

EMENTA
Conceitos básicos associados ao gerenciamento e controle da poluição atmosférica em ambientes externos e internos, conhecimento de metodologias e equipamentos para o controle da poluição atmosférica, conceitos e legislação associada ao tema.

PROGRAMA

Objetivos
- Conhecer os processos associados à poluição atmosférica, quantificar e controlar as emissões de poluentes atmosféricos.

Bases Científico-Tecnológicas (Conteúdos)
1. Introdução ao gerenciamento e controle da poluição atmosférica;
2. Composição da atmosfera;
3. Classificação dos poluentes atmosféricos;
4. Fontes de poluição atmosférica;
5. Histórico da poluição atmosférica;
6. Impactos econômicos, sociais e ambientais da poluição atmosférica;
7. Padrões da qualidade do ar;
8. Índice da qualidade do ar;
9. Padrões de emissões de poluentes atmosféricos;
10. Metodologias e equipamentos de monitoramento da qualidade do ar;
11. Química da atmosfera;
12. Meteorologia e dispersão de poluentes atmosféricos;
13. Poluição atmosférica nos processos industriais;
14. Metodologias e equipamentos de controle da poluição atmosférica;
15. Poluição e qualidade do ar interno.

Procedimentos Metodológicos
As aulas serão expositivas dialogadas, estimulando a participação e o senso crítico dos alunos. Serão apresentadas metodologias e equipamentos de monitoramento, quantificação e controle da poluição atmosférica. Estudos de casos serão aplicados no intuito de trazer situações práticas. A utilização de programas computacionais servirá como ferramenta importante na fixação do aprendizado e no estímulo à construção do conhecimento por parte do aluno. Durante a disciplina serão feitas visitas técnicas a empresas e instituições que utilizam processos, metodologias e equipamentos de monitoramento e controle da poluição atmosférica.

Recursos Didáticos
- Projetor de multimídia, quadro branco, filmes, programas computacionais, GPS.

Avaliação
- A avaliação é contínua e leva em conta a frequência do aluno nas aulas que são expositivas interacionais associadas a atividades práticas, participação nas atividades propostas e avaliação escrita.

Bibliografia Básica
Bibliografia Complementar

1. LISBOA, H. M. *Controle da Poluição Atmosférica*. ENS/UFSC

Software(s) de Apoio:

- Industrial Waste Air Model – IWAIR
- Indoor Air Quality Modeling – IQAX
- Risk Assessment and Modeling - Human Exposure Model (HEM)
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0026

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>Gestão de Resíduos Sólidos</th>
<th>Carga-Horária:</th>
<th>60h (80h/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-Requisito(s):</td>
<td>Poluição Ambiental II</td>
<td>Número de créditos:</td>
<td>4</td>
</tr>
</tbody>
</table>

EMENTA

PROGRAMA

Objetivos

- Conhecer os diversos tipos de resíduos, classificação, problemática ambiental, legislação, modelos de gestão e desafios tecnológicos e de gerenciamento dos resíduos nos municípios e nas empresas;
- Compreender a estrutura, organização, planejamento, monitoramento e fiscalização do sistema de limpeza pública;
- Entender os aspectos técnicos das etapas de acondicionamento, coleta, transporte, tratamento e disposição final dos resíduos sólidos urbanos;
- Exercitar o conteúdo teórico em atividades práticas na área de resíduos (município e/ou empresas).

Bases Científico-Tecnológicas (Conteúdos)

8. Caracterização dos resíduos sólidos urbanos
 8.1. Definição de resíduos e rejeitos.
 8.2. Origem e composição dos resíduos sólidos.
 8.3. Características físicas, químicas e biológicas.
 8.4. Classificação dos resíduos sólidos.

9. A problemática da geração de resíduos
 9.1. Aspectos ambientais, sanitários, econômicos, sociais, culturais e políticos.
 9.2. Problemas ambientais e de saúde pública.

10. Política Nacional de Resíduos Sólidos
 10.1. Antecedentes normativos.
 10.2. Objetivos, princípios, instrumentos, diretrizes, prazos, metas e ações.
 10.3. Avanços, entraves e desafios.

11. Gerenciamento integrado e sustentável dos resíduos sólidos
 11.1. Modelos de gestão e gerenciamento.
 11.2. Inventário de resíduos.
 11.3. Planos municipais de gestão integrada.
 11.4. Consórcios intermunicipais.

12. Projeção das quantidades de resíduos sólidos urbanos
 12.1. Métodos de avaliação do crescimento populacional.
 12.2. Métodos de avaliação para períodos curtos.
 12.3. Métodos de avaliação para períodos longos.

13. Metodologias e técnicas de minimização, reutilização e reciclagem dos resíduos
 13.2. Benefícios ambientais, econômicos e sociais da coleta seletiva.
 13.3. Projeto e implantação de programas de coleta seletiva.
 13.4. Caracterização dos principais tipos de resíduos e especificidades acerca da reciclagem (plástico, papel, vidro, metal e material orgânico).
 13.5. Estudos de caso sobre programas de coleta seletiva em empresas e/ou municípios.
14. Limpeza de logradouros, acondicionamento, coleta e transporte
 14.2. Tipos de acondicionadores, características técnicas, vantagens e desvantagens.
 14.3. Tipos de coleta regular e seu dimensionamento.
15. Resíduos especiais
 15.1. Resíduos do Serviço de Saúde (RSS)
 15.2. Resíduos de Construção e Demolição (RCD)
 15.3. Resíduos Industriais (RI)
16. Modelos Tecnológicos para Tratamento e Disposição final ambientalmente adequada de resíduos e rejeitos
17. Planos de gerenciamento integrado de resíduos sólidos
 17.1. Roteiro para elaboração de um plano municipal de gerenciamento (PMGIRS).
 17.2. Plano simplificado (até 20.000hab).

Procedimentos Metodológicos

- Aulas teórica/expositivas/dialogadas;
- Aulas de campo/visitas técnicas;
- Atividades práticas supervisionadas.

Recursos Didáticos

- Quadro branco, pincel e projetor de multimídia, apresentação de vídeos técnicos.

Avaliação

- Provas escritas.
- Atividades individuais e em grupo.
- Relatórios.
- Seminários.

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ESA.0025

Disciplina: Estudos de Impacto Ambiental
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Poluição Ambiental II
Número de créditos: 4

EMENTA

PROGRAMA
Objetivos
Proporcionar ferramentas de Gestão de Recursos Naturais para Avaliação de Aspectos e Impactos Ambientais e delineamento dos procedimentos de licenciamento ambiental com a finalidade de proporcionar ao aluno formação que o capacite à coordenação de equipe multidisciplinar para a realização de Estudos Ambientais.

Bases Científico-Tecnológicas (Conteúdos)

1. INTRODUÇÃO
2. HISTÓRICO DO ESTUDO DE IMPACTO AMBIENTAL – EIA - NO BRASIL
3. O ESTUDO DE IMPACTO AMBIENTAL E RELATÓRIO DE IMPACTO AMBIENTAL – EIA/RIMA
 3.1 Conceito
 3.2 Objetivo
 3.3 Elaboração
 3.4 Independência da Equipe
 3.5 Responsabilidade do empreendedor e da equipe
 3.6 Custeio
 3.7 Diretrizes Gerais
 3.8 Conteúdo mínimo do EIA
 3.9 Conteúdo mínimo do RIMA
 3.10 Publicidade e audiência pública
 3.11 Importância e crítica do EIA
 3.12 Conceitos equivocados sobre o EIA
4. ESTUDOS DE CASOS – EIA/RIMA
5. LICENCIAMENTO AMBIENTAL
 5.1 Conceitos
6. ASPECTOS LEGAIS E INSTITUCIONAIS DO LICENCIAMENTO AMBIENTAL
7. COMPETÊNCIAS PARA O LICENCIAMENTO AMBIENTAL
 7.1 O licenciamento federal
 7.2 O licenciamento estadual
 7.3 O licenciamento municipal
8. O LICENCIAMENTO AMBIENTAL
 8.1 Tipos de licenças
 8.2 Instrumentos do licenciamento ambiental
 8.3 Prazos de validade das licenças
 8.4 Publicidade do licenciamento ambiental
9. PROCEDIMENTO ADMINISTRATIVO DO LICENCIAMENTO AMBIENTAL
10. ESTUDOS DE CASOS – LICENCIAMENTOS
11. O RELATÓRIO DE CONTROLE AMBIENTAL – RCA
12. O RELATÓRIO DE IMPACTO DE VIZINHANÇA – RIV
13. O RELATÓRIO DE AVALIAÇÃO AMBIENTAL – RAA

Procedimentos Metodológicos
Aulas teóricas expositivas; Análise crítica de textos escolhidos; Trabalhos escritos; Seminários; Debates; Aulas externas; Pesquisa bibliográfica; Pesquisa de campo.
Recursos Didáticos
Projetor de multimídia, quadro branco, filmes, mapas, estudos ambientais, periódicos.

Avaliação
Avaliação individual; Trabalhos realizados em grupo e individual; Participação nas discussões.

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0023

<table>
<thead>
<tr>
<th>Disciplina: Sistema de Gestão Ambiental</th>
<th>Carga-Horária: 60h (80h/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré-Requisito(s): Estratégias de sustentabilidade para organizações produtivas, Engenharia Econômica</td>
<td>Número de créditos: 4</td>
</tr>
</tbody>
</table>

EMENTA

Normalização; A Série ISO 14000; Compreensão da ISO 14001; Política Ambiental, Planejamento, Implementação e Operação, Verificação e Análise do Sistema de Gestão Ambiental estruturado na NBR ABNT ISO 14001:2015.

PROGRAMA

Objetivos

- Proporcionar aos alunos conhecimentos sobre os conceitos, a linguagem, os métodos e a utilidade de um sistema de gestão ambiental, considerado como uma estratégia para promover a sustentabilidade em organizações produtivas.
- Dominar os elementos necessários e características para implementação de um sistema de gestão ambiental estruturado na NBR ABNT ISO 14001:2015.
- Mostrar o uso de auditorias internas em situações específicas para operacionalização de um sistema de gestão ambiental;

Bases Científico-Tecnológicas (Conteúdos)

1. Normalização
 1.1. Normas técnicas
 1.2. Processo de normalização
 1.3. Série ISO 14000
2. ABNT NBR ISO 14001
 2.1. Definições e Características de um Sistema de Gestão Ambiental
 2.2. Estudos de Caso – Benefícios e Particularidades
 2.3. Ciclo PDCA
 2.4. Termos e definições
 2.5. Estrutura organizacional para Sistema de Gestão Ambiental
3. Contexto da Organização
 3.1. Entendendo a Organização e seu Contexto
 3.2. Necessidades e Expectativas dos Stakeholders
 3.3. Determinação do Escopo do Sistema de Gestão Ambiental
4. Política ambiental
 4.1. Liderança e Comprometimento
 4.2. Elaboração da Política ambiental
 4.3. Papéis, Responsabilidades e Autoridades Organizacionais
5. Planejamento de um Sistema de Gestão Ambiental
 5.1. Aspectos Ambientais
 5.2. Requisitos Legais
 5.3. Objetivos Ambientais
 5.4. Planejamento de Ações
6. Apoio
 6.1. Recursos
 6.2. Competência
 6.3. Conscientização
 6.4. Comunicação
 6.5. Informação Documentada
7. Operação
 7.1. Planejamento e Controle Operacionais
 7.2. Preparação e Resposta a Emergências
8. Avaliação de Desempenho
8.1. Introdução ao Uso de Indicadores Ambientais
8.2. Monitoramento, Medição, Análise e Avaliação
8.3. Avaliação de Conformidade
8.4. Auditoria Interna
9. Melhoria
9.1. Não Conformidade e Ação Corretiva
9.2. Melhoria Contínua

<table>
<thead>
<tr>
<th>Procedimentos Metodológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aulas expositivas/dialogadas;</td>
</tr>
<tr>
<td>• Simulação de auditorias internas para implementação de um Sistema de Gestão Ambiental;</td>
</tr>
<tr>
<td>• Elaboração de Documentos Exigidos para um Sistema de Gestão Ambiental;</td>
</tr>
<tr>
<td>• Estudo de caso em empresas reais.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recursos Didáticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Quadro branco, pincel e projetor de multimídia</td>
</tr>
</tbody>
</table>

Avaliação

<table>
<thead>
<tr>
<th>Avaliação</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Provas escritas</td>
</tr>
<tr>
<td>• Relatórios de atividades individuais e em grupo</td>
</tr>
<tr>
<td>• Relatório de estudo de caso em empresa real</td>
</tr>
</tbody>
</table>

Bibliografia Básica

JÚNIOR VILELA, Alcir. **Modelos e ferramentas de gestão ambiental:** desafios e perspectiva para as organizações. São Paulo: SENAC-SP, 2006.

Curso: Engenharia Sanitária e Ambiental
Código: ESA.0028

Disciplina: Projeto de Sistemas de Abastecimento de Água
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Tratamento de Águas para Abastecimento
Número de créditos: 4

EMENTA

Proporcionar as bases científicas e tecnológicas pertinentes à elaboração de projetos de abastecimento de água com domínio dos conceitos e da terminologia, elaboração de peças gráficas e orçamentos.

PROGRAMA

Objetivos

Desenvolver habilidades e competências para permitir que o profissional elabore projetos executivos associados a sistemas de abastecimento de água.

Bases Científico-Tecnológicas (Conteúdos)

- Estudo da concepção de projetos de sistemas abastecimento de água
- Levantamento dos critérios de projeto para sistemas de abastecimento de água
- Execução do dimensionamento
- Apresentação gráfica do projeto
- Orçamento de sistemas de abastecimento de água
- Apresentação do projeto executivo

Procedimentos Metodológicos

- Aulas teórica/expositivas
- Atividades práticas supervisionadas.

Recursos Didáticos

- Quadro branco, pincel e projetor de multimídia, apresentação de vídeos técnicos.

Avaliação

- Provas escritas.
- Atividades individuais e em grupo.
- Relatórios técnicos

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ESA .0029

Disciplina: Projeto de Sistemas de Esgotamento Sanitário
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Tratamento de Águas Residuárias
Número de créditos: 4

EMENTA
Proporcionar as bases científicas e tecnológicas pertinentes à elaboração de projetos de sistemas de esgotamento sanitário com domínio dos conceitos e da terminologia, elaboração de peças gráficas e orçamentos.

PROGRAMA

Objetivos

Desenvolver habilidades e competências para permitir que o profissional elabore projetos executivos associados a sistemas de esgotamento sanitário.

Bases Científico-Tecnológicas (Conteúdos)

- Estudo da concepção de projetos de sistemas de esgotamento
- Levantamento dos critérios de projeto para sistemas de esgotamento
- Execução do dimensionamento
- Apresentação gráfica do projeto
- Orçamento de sistemas de esgotamento
- Apresentação do projeto executivo

Procedimentos Metodológicos

- Aulas teórica/expositivas
- Atividades práticas supervisionadas.

Recursos Didáticos

- Quadro branco, pincel e projetor de multimídia, apresentação de vídeos técnicos.

Avaliação

- Provas escritas.
- Atividades individuais e em grupo.
- Relatórios técnicos

Bibliografia Básica

Bibliografia Complementar

167

Curso: **Engenharia Sanitária e Ambiental**
Código: ESA.0011

Disciplina: Administração, Empreendedorismo e Inovação
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Sistema de Gestão Ambiental
Número de créditos: 4

EMENTA
Implantação de novas estratégias corporativas administrativas e de negócios, reconhecendo as competências nas quais se pretende construir a vantagem competitiva e diferencial de inovação. Inclui a realização da análise de ambiente e concorrência, o suporte a decisão estratégica e a gestão de sua implantação. Mensurar e adotar, em atividade profissional, estratégias empresariais inovadoras compatíveis com a organização. Identificar tendências do mercado e modelos de negócios inovadores de caráter estratégico.

PROGRAMA

Objetivos
- Conhecer os conceitos voltados para administração empresarial, empreendedorismo e inovação.
- Estudar as ferramentas de estratégias organizacionais.
- Analisar modelo de negócios inovadores.

Bases Científico-Tecnológicas (Conteúdos)
- Novas estratégias corporativas e administrativas.
- Vantagem competitiva e diferencial de inovação.
- Análise de ambiente e concorrência.
- Processo decisório e estratégia organizacional.
- Estratégias e modelos de negócios inovadores.

Procedimentos Metodológicos
- Aulas expositivas e dialogadas;
- Estudos de casos.

Recursos Didáticos
- Quadro branco, pincel e projetor de multimídia

Avaliação
- Participação em Debates; Avaliações escrita; Trabalhos em grupo e individual; Seminários. Estudos de caso.

Bibliografia Básica

Bibliografia Complementar

ANEXO III – EMENTAS E PROGRAMAS DAS DISCIPLINAS OPTATIVAS

Curso:	Engenharia Sanitária e Ambiental
Cód.:	ENG.0112
Disciplina:	Óptica
Pré-Requisito(s):	Física Geral III
Carga-Horária:	60h (80h/a)
Número de créditos:	4

EMENTA

Ondas Eletromagnéticas. Ótica Geométrica. Interferência, Difração e Polarização de Ondas Eletromagnéticas

PROGRAMA

Objetivos

O aluno deverá aprender conceitos básicos sobre Ótica Geométrica, Interferência, Difração e Polarização de Ondas Eletromagnéticas

Bases Científico-Tecnológicas (Conteúdos)

1. Ótica Geométrica; Propagação retilínea da luz; Reflexão e refração; O Princípio de Fermat; Reflexão total; Espelho plano; Espelho esférico; Superfície refrаторa esférica; Lentes delgadas; Noções sobreinstrumentosópticos; Propagação num meioinomogêneo.
2. Interferência; Interferência de ondas; Análise do experimento de Young; Interferência em lâminas delgadas; Discussão das franjas de interferência; Interferômetros; Coerência.
3. Difração; O conceito de difração; O Princípio de Huygens-Fresnel; O método das zonas de Fresnel; Difração de Fresnel; Difração de Fraunhofer; Abertura rectangular; Difração de Fraunhofer por uma fenda; Abertura circular; Poder separador; Par de fendas e rede de difração; Dispersão e poder separador da rede; Difração de raios X; Holografia.
4. Polarização; Equações de Maxwell num meio transparente; Vetor de Poynting real e complexo; Ondas planas monocromáticas; Polarização; Atividade ótica natural; Condições de contorno; Reflexão e refração; Fórmulas de Fresnel; Refletividade; Polarização por reflexão; Reflexão total; Penetração da luz no meio menos denso.

Procedimentos Metodológicos

- Aulas expositivas, gráficos gerados por computador e resolução de problemas

Reursos Didáticos

- Quadro branco, pincel e projetor de multimídia, software de computação algébrica

Avaliação

- Provas escritas e lista de exercícios

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ENG.0113

Disciplina: Ondas
Carga-Horária: 30h (40h/a)
Número de créditos: 2

EMENTA

PROGRAMA

Objetivos

O aluno deverá aprender conceitos básicos sobre Oscilações Harmônicas, Oscilações Forçadas, Oscilações Amortecidas, Movimento Harmônico Simples, Ondas, Modos Normais de Vibração, A Equação de Onda, Reflexão e Refração, Interferência, Difração, Ondas Sonoras, Ultrassom e Infrassom, Batimentos, Ressonância, Efeito Doppler e Escalas Musicais.

Bases Científico-Tecnológicas (Conteúdos)

1. O Oscilador Harmônico; Oscilações harmônicas; Soluções; Linearidade e princípio de superposição; Interpretação física dos parâmetros; Ajuste das condições iniciais; Energia do oscilador; O pêndulo de torção; O pêndulo simples; O pêndulo físico; Oscilações de um líquido num tubo em U; Oscilações de duas partículas; Movimento harmônico simples e movimento circular uniforme; Notação complexa; A fórmula de Euler; Superposição de movimentos harmônicos simples; Batimentos.

2. Oscilações Amortecidas e Forçadas; Oscilações amortecidas; Oscilações forçadas; Ressonância; Oscilações forçadas amortecidas; O balanço de energia; Oscilações acopladas.

3. Ondas; O conceito de onda; Ondas em uma dimensão; Ondas progressivas; Ondas harmônicas; A equação de ondas unidimensional; A equação das cordas vibrantes; O princípio de superposição; Intensidade de uma onda; Interferência de ondas; Batimentos; velocidade de grupo e velocidade de fase; Reflexão de ondas; Modos normais de vibração; Movimento geral da corda e análise de Fourier.

4. Som; Natureza do som; Ondas sonoras; Relações entre Densidade, Pressão e Deslocamento; A velocidade do som (sólidos, líquidos e gases); Ondas sonoras harmônicas; Intensidade Sonora; Sons musicais; Altura e timbre; Fontes sonoras; Escalas Musicais; Membranas e placas Vibrantes; Ultrassom e Infrassom; Ondas esféricas; Ondas bidimensionais; princípio de Huygens; Reflexão e refração; Interferência em maiss dimensões; Efeito Doppler. Cono de Mach.

Procedimentos Metodológicos

- Aulas expositivas, gráficos gerados por computador e resolução de problemas

Recursos Didáticos

- Quadro branco, pincel e projetor de multimídia, software de computação algébrica

Avaliação

- Provas escritas e lista de exercícios

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ENG.0114

<table>
<thead>
<tr>
<th>Disciplina</th>
<th>Carga-Horária</th>
<th>Pré-Requisito(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lógica matemática</td>
<td>60h (80h/a)</td>
<td></td>
</tr>
</tbody>
</table>

Número de créditos: 4

EMENATA
Introdução à lógica proposicional e à teoria da demonstração a partir da lógica tradicional.

PROGRAMA

Objetivos

Fornecer aos alunos um conhecimento técnico de alguns sistemas e ferramentas de inferência mais importantes, junto com um conhecimento teórico sobre os usos, possibilidades e limites da lógica clássica.

Bases Científico-Tecnológicas (Conteúdos)

1. **Introdução**
 1.1. Lógica, Argumentos Válidos e Argumentos Corretos
2. **Lógica Sílogística Aristotélica**
 2.1. Tradução e Formalização de Argumentos
 2.2. Validez de Argumentos na Lógica Sílogística
3. **Lógica Proposicional Básica**
 3.1. Tradução e Formalização
 3.2. Tabelas de Verdade
 3.3. Valorações
4. **Provas Proposicionais**

Procedimentos Metodológicos

- A metodologia tem como base os princípios da didaticidade constituída na relação professor-alunos, com o encaminhamento dos seguintes procedimentos: aulas expositivas dialogadas, discussões e debates em sala, estudos de texto, leitura dirigida, projeção de vídeos e filmes, seminários, painel integrador e estudos em grupo.

Recursos Didáticos

- Quadro branco, pincel e projetor de multimídia.

Avaliação

- O processo de avaliação será realizado continuamente, considerando a participação e o envolvimento dos alunos nas discussões de textos, debates, seminários, elaboração de portfólios de aprendizagem e demais atividades de aproveitamento. Constará de produções individuais e em grupo.

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ENG.0117

Disciplina: Sociologia do Trabalho
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): -
Número de créditos: 2

EMENTA

PROGRAMA
Objetivos

• Compreender de que forma o trabalho organiza e estrutura a sociedade e suas características e relações básicas, em especial na sociedade capitalista;
• Compreender as implicações objetivas e subjetivas geradas pelas inovações tecnológicas e transformações políticas, econômicas e jurídicas contemporâneas no mundo do trabalho;
• Compreender a relação entre trabalho e as desigualdades sociais, étnico-raciais e de gênero;
• Identificar e analisar as tendências e exigências do mundo do trabalho atual e as formas de resistências e alternativas construídas pelos trabalhadores e suas organizações;
• Investigar os Arranjos Produtivos Locais;
• Investigar a dinâmica e experiência social do mercado de trabalho do tecnólogo;

Bases Científico-Tecnológicas (Conteúdos)

1. A centralidade do trabalho
 1.2 Os fundamentos do trabalho na sociedade capitalista;
 1.2.1 Karl Marx: Dominação, mais-valia e luta de classe.
 1.2.2 Emile Durkheim: Divisão social do trabalho, coesão e anomia.
 1.2.3 Max Weber: Capitalismo moderno, racionalização e ética burguesa do trabalho.

2. Formas de organização e controle do trabalho
 2.1. Paradigmas organizacionais: taylorismo, fordismo e toyotismo.
 2.2. Reestruturação produtiva e flexibilização das relações trabalhistas;
 2.3. Inovações tecnológicas e mudanças na regulamentação do trabalho e seus impactos e implicações sobre o mundo do trabalho;
 2.3.1. Novas Tecnologias de informação e comunicação.
 2.3.2. Economia do compartilhamento e empresas plataformas.
 2.3.3. Indústria 4.0, automação e inteligência artificial.
 2.3.4. Trabalhadores digitais e infoproletariado.
 2.3.5. Mudanças na legislação trabalhista e flexibilização do trabalho.
 2.3.6. Saúde mental, sofrimento social e trabalho.

3. Mundo do trabalho, questão social e as múltiplas desigualdades no Brasil
 3.1. Dinâmica e retratos do mercado de trabalho brasileiro.
 3.2. Precarização do trabalho, informalidade e novas formas de contração trabalhistas
 3.3. Desigualdades sociais, de gênero e étnico-raciais no mercado de trabalho brasileiro.
 3.4. Lutas sociais do trabalho, sindicalismo e formas de resistência dos trabalhadores.

4. Arranjos Produtivos Locais
 4.1. Dinâmica produtiva e do mercado de trabalho local;
 4.2. Economia Solidária e Cooperativismo;
 4.3. Interfaces entre a formação tecnológica e o mundo de trabalho;
 4.4. Experiência social do trabalho e do mercado do tecnólogo.
Procedimentos Metodológicos
Aulas expositivas e dialogadas; leitura, compreensão e análise de textos; estudo dirigido; seminário e debates; ensino através de pesquisas sociológicas; docência compartilhada; exibições de vídeos seguidos de debates; exposições fotográficas, de poesias e de músicas; aulas de campo, visitas técnicas e produção de diagnósticos sociológicos sobre os arranjos produtivos locais e a experiência social de trabalho do tecnólogo.

Recursos Didáticos
Quadro branco, pincéis para quadro branco, bibliografia especializada, revistas acadêmicas, jornais (impressos e on-line), computador, internet, projetor multimídia.

Avaliação
O processo avaliativo pode ocorrer de forma contínua, diagnóstica, mediadora e formativa. Nessa perspectiva, como formas de avaliar o aprendizado na disciplina serão utilizados como instrumentos avaliativos: avaliações escritas e orais; trabalhos escritos individuais e em grupos; participação em seminários, debates, júris simulados; confecção de cadernos temáticos; relatórios de aula de campo, de visitas técnicas, ou de pesquisas.

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ENG.0118

Disciplina: Inglês Técnico e Instrumental
Carga-Horária: 30h (40h/a)
Número de créditos: 2

EMENTA
Curso de inglês instrumental, com ênfase na leitura e compreensão de textos de interesse das áreas de estudo dos alunos.

PROGRAMA

Objetivos
A disciplina visa ao exercício da capacidade de observação, reflexão e crítica de textos de interesse geral que permita um melhor desenvolvimento da habilidade de leitura.

Bases Científico-Tecnológicas (Conteúdos)
1. Técnicas de leitura em diferentes níveis de compreensão.
2. Estudo de itens lexicais e categoriais.
3. Estudo da estrutura textual.
4. Funções linguísticas dos textos.

Procedimentos Metodológicos
- Aulas expositivas
- Exercícios de leitura e compreensão, escritas individuais ou em grupo
- Levantamento e análise de aspectos gramaticais e lexicais.

Recursos Didáticos
Quadro branco, pincel, Internet, projetor multimídia, computador, televisão, aparelho de som, CDs e DVDs.

Avaliação
- Tradução de textos
- Trabalhos de pesquisa.
- Critérios: nas avaliações, será aferida a capacidade de leitura e compreensão de textos e documentos; com clareza, precisão e propriedade.

Bibliografia Básica

Bibliografia Complementar
<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>ENG.0119</td>
</tr>
<tr>
<td>Disciplina:</td>
<td>Psicologia das Relações de Trabalho</td>
</tr>
<tr>
<td>Carga-Horária:</td>
<td>30h (40h/a)</td>
</tr>
<tr>
<td>Pré-Requisito(s):</td>
<td>-</td>
</tr>
<tr>
<td>Número de créditos:</td>
<td>2</td>
</tr>
</tbody>
</table>

EMENTA

PROGRAMA

Objetivos

- Apartir da compreensão da personalidade e das emoções humanas, identificar os fundamentos dos comportamentos individuais e de grupo que interferem na percepção de si e do outro nas organizações.
- Compreender a importância do processo de comunicação, como elemento facilitador do exercício profissional, participação em grupos e do trabalho em equipe, desenvolvendo uma interação eficaz através do uso adequado do feedback;
- Conhecer os processos psicológicos das relações humanas no trabalho no que se refere à liderança, à administração de conflitos, comportamento ético e postura profissional adequada.

Bases Científico-Tecnológicas (Conteúdos)

1. Personalidade e Emoções
2. Processos de Socialização;
3. Percepção Social;
4. Aprendizagem e Inteligências Múltiplas;
5. Motivação no trabalho;
6. Formação de Grupo e Equipe;
7. Comunicação Interpessoal e Organizacional;
8. Liderança e administração de conflitos.

Procedimentos Metodológicos

- A metodologia tem como base os princípios da dialógicidade constituída na relação professor-alunos, com o encaminhamento dos seguintes procedimentos: aulas expositivas dialogadas, discussões e debates em sala, estudos de texto, leitura dirigida, projeção de vídeos e filmes, seminários, painel integrador e estudos em grupo.

Recursos Didáticos

- Quadro branco, pincel e projetor de multimídia

Avaliação

- O processo de avaliação será realizado continuamente, considerando a participação e o envolvimento dos alunos nas discussões de textos, debates, seminários, elaboração de portfólios de aprendizagem e demais atividades de aproveitamento. Constará de produções individuais e em grupo.

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ENG.0120

Disciplina: Qualidade de vida e trabalho
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): -
Número de créditos: 2

EMENTA
Possibilitar o estudo e a vivencia da relação do movimento humano com a saúde, favorecendo a conscientização da importância das práticas corporais como elemento indispensável para a aquisição da qualidade de vida. Considerar a nutrição equilibrada, o lazer, a cultura, o trabalho e a afetividade como elementos associados para a conquista de um estilo de vida saudável.

PROGRAMA
Objetivos

GERAL:
- Valorizar o corpo e a atividade física como meio de sentir-se bem consigo mesmo e com os outros, sendo capaz de relacionar o tempo livre e o lazer com sua vida cotidiana.

ESPECÍFICOS:
- Relacionar as capacidades físicas básicas, o conhecimento da estrutura e do funcionamento do corpo na atividade física e no controle de movimentos adaptando às suas necessidades e as do mundo do trabalho.
- Utilizar a expressividade corporal e o movimento humanoparatransmitir sensações, ideias e estados de ânimo.
- Reconhecer os problemas de posturas inadequadas, dos movimentos repetitivos (LER e DORT), a fim de evitar acidentes e doenças no ambiente de trabalho ocasionando a perda da produtividade e na qualidade de vida.

Bases Científico-Tecnológicas (Conteúdos)
1. Qualidade de vida e trabalho
 1.1. Conceito de qualidade de vida e saúde.
 1.2. Qualidade de vida e saúde no trabalho.
2. Atividade Física e lazer
 2.1. A atividade física regular e seus benefícios para a saúde.
 2.2. A relação trabalho, atividade física e lazer.
3. Programa de Atividade Física
 3.1. Conceito e tipos de ginástica.
 3.2. Esporte participação e delazer.
 3.3. Ginástica laboral

Procedimentos Metodológicos
- Aulas dialogadas, aulas expositivas, vivencias corporais, aulas de campo, oficinas pedagógicas, leitura e reflexão sobre textos, palestras, seminários, apreciação crítica de vídeos, músicas e obras de arte, discussão de notícias e reportagens jornalísticas e pesquisa temática.

Recursos Didáticos
- Projetor multimídia, textos, dvd, cd, livros, revistas, bolas diversas, cordas, bastões, arcos, colchonete, halteres, sala de ginástica, piscina, quadra, campo, pátio, praças.

Avaliação
- A frequência e a participação dos alunos nas aulas; o envolvimento em atividades individuais e/ou em grupo; a elaboração de relatórios e produção textual; a apresentação de seminários; avaliação escrita; a autoavaliação da participação nas atividades desenvolvidas.

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ENG.0121

Disciplina: LIBRAS
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): -
Número de créditos: 2

EMENTA

PROGRAMA

Objetivos
• Compreender as diferentes visões sobre surdez, surdos e língua de sinais que foram construídas ao longo da história e como isso repercutiu na educação dos surdos;
• Analisar as diferentes filosofias educacionais para surdos;
• Conhecêrlinguadesinaisnoseuusoesuaimportânciadesenvolvimentoeducacionalda pessoa surda;
• Aprender noções básicas de língua de sinais

Bases Científico-Tecnológicas (Conteúdos)
1. Apresentação da professora, alunos, disciplina, cronograma e proposta de trabalho;
2. Debate I: Abordagem histórica da surdez e Mitos sobre as línguas desinais;
3. Debate II: Abordagens Educacionais: Oralismo, Comunicação Total, Bilinguismo;
4. Língua de Sinais (básico) – exploração de vocabulário e diálogos em sinais: Alfabeto datilológico; expressões socioculturais; números e quantidade; noções de tempo; expressão facial e corporal; calendário; meios de comunicação; tipos de verbos; animais; objetos + classificadores; contação de histórias sem texto; meios de transportes; alimentos; relações de parentesco; profissões; advérbios;
5. Filme sobre surdez.

Procedimentos Metodológicos
• Aulas práticas dialogadas
• estudo de textos e atividades dirigidas em grupo
• leitura de textos em casa
• debate em sala de aula
• visita a uma instituição de surdos
• apresentação de filme.

Recursos Didáticos
• Quadro branco, pincel e projetor de multimídia.

Avaliação
• O aluno será avaliado pela frequência às aulas, participação nos debates, entrega de trabalhos a partir dos textos, entrega do relatório referente ao trabalho de campo e provas de compreensão e expressão em Libras.

Bibliografia Básica

Bibliografia Complementar

Curso: Engenharia Sanitária e Ambiental
Código: ESA.0040

Disciplina: Introdução à Gestão Pública
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): -
Número de créditos: 4

EMENTA

PROGRAMA
Objetivos
• Visa oferecer discussões crítico-reflexiva sobre os principais modelos de administração pública;
• Oportunizar conhecimentos sobre os temas emergentes e novos objetos de estudo na gestão pública;
• Despertar o senso crítico referente aos desafios envolvidos no contexto da gestão pública.

Bases Científico-Tecnológicas (Conteúdos)
1. Principais modelos de administração:
1.1 Patrimonialista, burocrático e gerencial.
2. A reforma do Estado e a administração pública Gerencial.
3. Evolução e características da administração pública no Brasil.
4. Planejamento, organização, direção e controle na gestão pública.

Procedimentos Metodológicos
Exposições dialogadas, Seminários, Provas Escritas, Estudo de Casos, Livro-fórum, Atividade de Pesquisa e Resumos de Leituras

Recursos Didáticos
Projetor multimídia; quadro branco; laboratório de informática; vídeos.

Avaliação
Será permanente e contínua, conduzindo à superação das deficiências de aprendizado. A verificação, para efeito de nota, será o somatório de trabalhos de grupo, seminários, exercícios, relatórios de leituras, atividade de pesquisa, prova escrita e cumprimento das tarefas solicitadas

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0041

Disciplina: Fundamentos de Contabilidade
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): -
Número de créditos: 4

EMENTA
Conceito, finalidade e campo de atuação da Contabilidade; componentes patrimoniais; plano de contas; escrituração; balanço patrimonial e apuração de resultados.

PROGRAMA

Objetivos

• Compreender a origem e a finalidade da Contabilidade e das relações jurídicas do exercício financeiro, com base em aspectos quantitativos e qualitativos do patrimônio, permitindo a organização de planos de contas adequados e escrituração.
• Estabelecer a diferença entre débito, crédito e saldo, conhecer o significado das principais contas, entendendo a finalidade dos levantamentos contábeis, relacionando as providências necessárias para o encerramento do exercício, compreendendo a importância dos demonstrativos financeiros.

Bases Científico-Tecnológicas (Conteúdos)
1 Contabilidade: origem, conceito, objeto, objetivo, finalidade, campo de aplicação e usuário;
2 Patrimônio, Ativo e Passivo
2.1 Equação patrimonial
3 Atos e fatos administrativos;
4 Classificação das contas
4.1 Plano de contas
5 Escrituração
5.1 Débito e Crédito
5.2 Balancete de Verificação;
6 Demonstrações contábeis.

Procedimentos Metodológicos
Aulas expositivas dialogadas, estudos dirigidos com abordagem prática, seminários, atividades em grupo e individual.

Recursos Didáticos
Projetor multimídia, quadro branco.

Avaliação
Avaliação escrita, atividade individual e em grupo

Bibliografia Básica

Bibliografia Complementar
EMENTA

PROGRAMA

Objetivos

- Discutir a influência da tecnologia da informação na moderna administração pública
- Abordar conceitos e princípios sobre sistemas de informações
- Abordar o papel do profissional de gestão pública no planejamento estratégico em TI

Bases Científico-Tecnológicas (Conteúdos)

1. Introdução à tecnologia da informação
2. Sistema de informação na administração pública e privada.
3. Tecnologia e Administração: Criando a infra-estrutura da Tecnologia da informação.
4. Evolução da tecnologia da informação: Operações e aplicações de recursos de gestão.
5. Governança em TI: A gestão da informação como arma estratégica.
6. Tecnologias aplicadas a sistemas de informação: Sistema de Processamento de Transações (SPT); Sistemas de Informações Gerenciais (SIG); Sistemas de Suporte à Decisão (SAD); Sistemas de Informações Executivas (EIS); Sistemas de Planejamento de Recursos Empresariais (ERP); Sistema de Gestão de Relacionamento com cliente (CRM); Bancos de Dados; Inteligência Artificial (IA); tecnologias relacionadas a sistemas de informações.
7. Planejamento em Tecnologia da Informação.
10. Software livre e inclusão digital.
11. Terceirização da Tecnologia da Informação na Administração Pública
12. Princípios sobre Segurança da Informação

Procedimentos Metodológicos

- Aulas teóricas expositivas;
- Estudos de casos;
- Seminário;
- Leitura de textos e debates.

Recursos Didáticos

- Projetor multimídia;
- Computador;
- Quadro branco

Avaliação

- Avaliações escritas
- Trabalhos individuais e em grupo (listas de exercícios, estudos dirigidos, pesquisas)
- Apresentação dos trabalhos desenvolvidos

Bibliografia Básica

<table>
<thead>
<tr>
<th>Bibliografia Complementar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Software(s) de apoio</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BrOffice.org Impress e PDF View</td>
</tr>
</tbody>
</table>
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0043

Disciplina: Ética no Serviço Público
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): -
Número de créditos: 2

EMENTA

PROGRAMA

Objetivos

- Apresentar as estratégias de marketing voltadas para as oportunidades de adaptação de processos produtivos e de serviços que possam vincular uma marca, produto ou serviço a uma imagem ecologicamente consciente.
- Conhecer as ferramentas capazes de projetar e sustentar a imagem da empresa, difundindo-a com uma nova visão de mercado, destacando sua diferenciação ecologicamente correta junto à sociedade, fornecedores, funcionários e ao mercado.

Bases Científico-Tecnológicas (Conteúdos)

- As Questões Ambientais, a Sustentabilidade e o Marketing;
- A conscientização ambiental da sociedade;
- O marketing e a sustentabilidade;
- A Sociedade de Consumo e o Consumidor Ecológico;
- A responsabilidade da sociedade de consumo;
- O consumo sustentável;
- A Evolução do Conceito de Marketing e o caráter interdisciplinar do marketing;
- O Marketing Social e o marketing social corporativo;
- As principais diferenças entre o marketing social e o comercial;
- O Conceito de Marketing Ambiental e a proteção ambiental;
- A evolução do conceito de marketing ecológico;
- Características do marketing ecológico;
- A utilização do marketing ecológico pelas empresas;
- As ações do marketing ecológico e as funções do marketing ambiental;
- Políticas de marketing ecológico;
- Os Valores, a Ética e o Marketing Ambiental;
- A responsabilidade social do marketing;
- O novo paradigma ecológico;

Procedimentos Metodológicos

- Aulas virtuais por meio de material didático escrito. Interações virtuais dialogada, leitura dirigida, discussão e exercícios com o auxílio das diversas tecnologias da comunicação e da informação.

Recursos Didáticos

- Projetor de multimídia, quadro branco, transparências e textos.

Avaliação

Contínua por meio de atividades escritas, interações virtuais em chats, fóruns e outras ferramentas de interação virtual, individuais e em grupo.

Bibliografia Básica

Bibliografia Complementar

Software(s) de apoio

—
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0044

Disciplina: Marketing Ambiental
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): -
Número de créditos: 2

EMENTA

PROGRAMA
Objetivos
- Descrever os conceitos básicos da ética e o significado da dimensão moral ou ética da existência;
- Identificar as relações entre ética e instituições políticas;
- Definir ideal de conduta adequada ao serviço público, que combine excelência e retidão;
- Observar iniciativas governamentais que introduzam noções de ética na gestão pública;
- Identificar vantagens de criar e observar instrumentos de orientação da conduta na administração federal.

Bases Científico-Tecnológicas (Conteúdos)
1. Conceitos básicos e importância da ética
2. Histórico e evolução
3. Ética x Moral
4. A ética nos contextos público e privado
5. Autodeterminação e liberdade
6. O mérito da ação: intenção e Juízo desinteressado
7. Escolha e deliberação
8. Virtudes e caráter
9. Autonomia e responsabilidade
10. Códigos de ética
11. Ética na administração pública
12. Lei de probidade administrativa
13. Ética e responsabilidade social

Procedimentos Metodológicos
Aulas expositivas, aulas práticas em laboratório, estudos dirigidos com abordagem prática, seminários, pesquisa na Internet.

Recursos Didáticos
Projetor multimídia, quadro branco, filmes, artigos científicos.

Avaliação
- Avaliações escritas
- Trabalhos individuais e em grupo (listas de exercícios, estudos dirigidos, pesquisas)
- Apresentação dos trabalhos desenvolvidos

Bibliografia Básica

Bibliografia Complementar

Software(s) de apoio —
Curso: Engenharia Sanitária e Ambiental
Código: GETIN.S001

Disciplina: Eletro-Eletrônica básica
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): -
Número de créditos: 4

EMENTA
Conceitos básicos de Eletricidade e Eletrônica; Componentes e equipamentos de medições de grandezas elétricas fundamentais; Circuitos elétricos e eletrônicos em corrente contínua; Circuitos monofásicos de Corrente Alternada; Circuitos Trifásicos Equilibrados

PROGRAMA
Objetivos
Analizar o comportamento e as diversas aplicações dos circuitos elétricos, eletrônicos e magnéticos

Bases Científico-Tecnológicas (Conteúdos)

Circuitos elétricos resistivos
- Resistência e resistividade
- Condução e condutividade
- Efeitos da temperatura
- Lei de ohm
- Resistências lineares e não lineares
- Potência e energia

Circuitos elétricos em corrente contínua
- Associação de resistores: série, paralelo e série-paralelo
- Divisores de tensão e corrente
- Leis de Kirchhoff

Técnicas de Análise de Circuitos
- Análise geral de Kirchhoff
- Superposição
- Teorema de Thèvenin
- Transformações $\Delta \rightarrow \Pi$

Capacitância
- Campo eletrostático
- Materiais dielétricos
- Tipos de capacitores
- Associação de capacitores, série e paralelo
- Armazenamento de energia em circuito capacitivo

Magnetismo e circuitos magnéticos
- Campo magnético
- Corrente em um condutor
- Relutância e permeabilidade
- Materiais paramagnéticos, diamagnéticos e ferromagnéticos

Indutância
- Indução eletromagnética
- Auto-indutância
- Indutores em série e paralelo
- Armazenamento de energia em circuito indutivo
Geração de energia elétrica
- Geração de corrente alternada
- Formas de onda e frequência
- Valor médio
- Valor eficaz
- Resistência e corrente alternada
- Capacitância e corrente alternada, reatância capacitiva
- Indutância e corrente alternada, reatância indutiva

Circuitos monofásicos de Corrente Alternada
- Circuito série
 1. Circuito RL
 2. Circuito RC
 3. Circuito RLC
- Circuito Paralelo - Admitância
 6. Circuito RL
 7. Circuito RC
 8. Circuito RLC
- Circuito série - paralelo
- Potência ativa, aparente e reativa
- Correção de fator de potência

Circuitos Trifásicos Equilibrados
Ligação Estrela
Ligação Delta.

DIODOS SEMICONDUTORES
- Fundamentos de física dos semicondutores;
- Diodo ideal;
- Diodo real: comportamento exponencial;
- Circuitos básicos com diodos;
- Retificadores com diodos;
- Diodo Zener;
- Reguladores de tensão com Zener;
- Grampeador de tensão (restaurador DC);
- Multiplicadores de tensão;
- Limitadores de tensão;
- Diodo emissor de luz (LED);
- Optoacopladores

TRANSISTORES BIPOLARES
- Estrutura interna e simbologia;
- Regiões de operação e seus usos;
- O transistor como amplificador;
- Análise de circuitos de polarização;
- O transistor como chave.

NOÇÕES SOBRE MOSFETS
- Tipos de MOSFET (crescimento e depleção) e seus usos.
- Estruturas internas e simbologias.
- Regiões de operação e seus usos.
- Modelo de grandes sinais.
- Modelo de pequenos sinais.
<table>
<thead>
<tr>
<th>Procedimentos Metodológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aula teórica expositivas.</td>
</tr>
<tr>
<td>Trabalhos em grupo</td>
</tr>
<tr>
<td>Aulas práticas em laboratórios</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recursos Didáticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projetor multimídia, quadro branco, filmes, artigos científicos.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Avaliação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provas escritas</td>
</tr>
<tr>
<td>Listas de exercícios para casa</td>
</tr>
<tr>
<td>Relatórios de aulas práticas de laboratórios.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bibliografia Básica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ALBUQUERQUE, R. O. Análise de Circuitos em Corrente Contínua. Ed. Érica Ltda, São Paulo, 10ª edição, 1995</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bibliografia Complementar</th>
</tr>
</thead>
</table>

| **Software(s) de apoio** |
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0045

Disciplina: Informática Aplicada
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): Estudos de Impacto Ambiental
Número de créditos: 2

EMENTA
Possibilitar ao aluno a utilização de ferramentas computacionais para o desenvolvimento de aplicações técnicas na área de saneamento ambiental, compreendendo os serviços de água, esgoto, drenagem, análise e impactos ambientais.

PROGRAMA
Objetivos
- Utilizar os ambientes virtuais para obtenção de dados secundários.
- Conhecer os principais programas computacionais ligados à área de água, esgoto, drenagem urbana.
- Conhecer os principais programas computacionais ligados à área de análise e impactos ambientais.
- Modelagem computacional na resolução de problemas e impactos em saneamento ambiental.

Bases Científico-Tecnológicas (Conteúdos)
1. Utilização e formatação dos dados secundários
2. programas computacionais: rede de drenagem
3. programas computacionais: abastecimento de água
4. programas computacionais: rede de esgoto
5. programas computacionais: análise ambiental
6. programas computacionais: impactos ambientais
7. Modelagem computacional aplicada ao saneamento ambiental

Procedimentos Metodológicos
Aulas expositivas, aulas práticas em laboratório, estudos dirigidos com abordagem prática, seminários, pesquisa na Internet.

Recursos Didáticos
Projetor multimídia, quadro branco, filmes, artigos científicos.

Avaliação
- Provis escritas
- Listas de exercícios para casa
- Relatórios de aulas práticas de laboratórios.

Bibliografia Básica

Bibliografia Complementar

Software(s) de apoio
EPANET, PMWIN, MODFLOW, EPANET, MT3DMS, SWMM
| Curso: Engenharia Sanitária e Ambiental |
|---|---|
| Código: ESA.0046 |
| Disciplina: Climatologia |
| Carga-Horária: 60h (80h/a) |
| Pré-Requisito(s): Poluição Ambiental I |
| Número de créditos: 4 |

EMENTA

PROGRAMA

Objetivos

Analisar e compreender os fundamentos da climatologia, meteorologia e os principais aspectos do tempo e clima no mundo e no Brasil e sua aplicação para a prática no processo ensino-aprendizagem.

Bases Científico-Tecnológicas (Conteúdos)

Unidade 1 – Fundamentos da climatologia

1. **Introdução à Climatologia e Meteorologia**
 - Conceitos e origens.
 - Subdivisões e métodos da climatologia.
 - Sistema Climático, as fontes de informações e observações meteorológicas.
 - O ritmo climático e os elementos fundamentais do clima.

2. **Atmosfera terrestre**
 - Origem, composição e estrutura.
 - Dinâmica da atmosfera.

3. **Principais elementos e fatores do clima.**
 - Radiação solar, balanço de energia e interação com a atmosfera.
 - Temperatura do ar: medições, variações espaciais e sazonais.
 - Precipitação e Umidade atmosférica: formação, tipos e variações espaciais e sazonais.
 - Pressão atmosférica e vento: conceitos, medições e variações espaciais e sazonais.

Unidade 2 – Sistemas climáticos no espaço geográfico

4. **Circulação geral da atmosfera terrestre.**
 - Massas de ar e frentes.
 - Sistemas meteorológicos que atuam na América do Sul e no Brasil e no RN.
 - Principais fenômenos atmosféricos.

5. **Classificações climáticas**
 - Climas mundiais
 - Climas do Brasil e do RN.

6. **O clima e as mudanças climáticas.**
 - Fenômenos globais e regionais.
 - Clima urbano.
 - Microclimas

Procedimentos Metodológicos

Aulas expositivas, aulas práticas em laboratório, estudos dirigidos com abordagem prática, seminários, pesquisa na Internet.

Recursos Didáticos

- Projetor multimídia, quadro branco, filmes, artigos científicos.

Avaliação

- Provas escritas
- Listas de exercícios para casa
- Relatórios de aulas práticas de laboratórios.
Bibliografia Básica

Bibliografia Complementar

Software(s) de apoio
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0047

Disciplina: Hidrogeologia
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Poluição Ambiental I
Número de créditos: 4

EMENTA
Proporcionar as bases científicas e tecnológicas pertinentes à compreensão da origem, do armazenamento e da movimentação das águas subterrâneas, ao conhecimento da hidráulica dos poços profundos e aos padrões de análises hidroquímicas, à avaliação da capacidade de fornecimento de água através de testes de vazão e compreender a vulnerabilidade dos aquíferos.

PROGRAMA
Objetivos
Buscar desenvolver habilidades e competências para aplicar as técnicas de representação gráfica dos mapas hidrogeológicos e padrões hidroquímicos, para executar testes de vazões em poços profundos, aplicar técnicas de sondagens mecânicas e identificar a vulnerabilidade de aquíferos.

Bases Científico-Tecnológicas (Conteúdos)
- Origem e armazenamento das águas subterrâneas
- Porosidade e permeabilidade das rochas
- Conceito de captações subterrâneas
- Hidráulica dos poços profundos
- Projeto e construção de poços e sondagens
- Revestimento e filtros
- Instalação de recalque
- Técnicas e métodos de prospecção e equipamentos utilizados
- Técnicas de exploração e recalque de água subterrânea
- Técnicas de identificação da vulnerabilidade de aquíferos

Conhecer e aplicar software de cunho hidrogeológico

Procedimentos Metodológicos
Aulas expositivas, aulas práticas em laboratório, estudos dirigidos com abordagem prática, seminários, pesquisa na Internet.

Recursos Didáticos
Projetor multimídia, quadro branco, filmes, artigos científicos.

Avaliação
- Provas escritas
- Listas de exercícios para casa
- Visitas técnicas

Bibliografia Básica

Bibliografia Complementar
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0048

Disciplina: Ecotoxicologia
Carga-Horária: 60h (80h/a)

Pré-Requisito(s): Microbiologia Sanitária e Ambiental
Número de créditos: 4

EMENTA

Introdução ao Estudo da Ecotoxicologia; Poluentes ou Contaminantes Ambientais; Biomonitoramento da Qualidade Ambiental; Populações Humanas Expostas a Contaminantes Ambientais.

PROGRAMA

Objetivos

- Conhecer os conceitos básicos existentes na Toxicologia;
- Diferenciar “Ecotoxicologia” e “Toxicologia Ambiental”, de acordo com os seus objetos de estudo e formas de abordagem experimental;
- Conhecer as principais classes de contaminantes ambientais presentes no solo, na água e no ar;
- Descrever os mecanismos de transporte dos poluentes no ambiente;
- Descrever os principais efeitos crônicos e agudos dos poluentes sobre as populações, comunidades e ecossistemas terrestres e aquáticos;
- Compreender a importância dos ensaios ecotoxicológicos no monitoramento ambiental dos poluentes;
- Diferenciar os diversos tipos de testes realizados “in vivo” e “in vitro” com organismos indicadores;
- Conhecer os principais tipos de bioindicadores de poluição ambiental;
- Realizar procedimentos experimentais de bioensaios de toxicidade em laboratório, baseados nas normas técnicas vigentes;
- Descrever os principais mecanismos de intoxicação em populações humanas;
- Estimar o nível de risco ecotoxicológico ao qual se encontram expostas determinadas populações humanas;
- Utilizar os dispositivos legais vigentes como ferramentas de prevenção e controle da poluição ambiental.

Bases Científico-Tecnológicas (Conteúdos)

1. Introdução ao Estudo da Ecotoxicologia
 1.1. Fundamentos sobre Toxicologia: histórico, conceitos básicos, importância, objetivos, áreas de estudo, metodologias de trabalho.
 1.2. Ecotoxicologia e Toxicologia Ambiental: definições, objetos de estudo, formas de abordagem experimental, áreas de atuação na atualidade.

2. Poluentes ou Contaminantes Ambientais
 2.1. Principais classes de poluentes.
 2.2. Mecanismos de transporte dos poluentes no ar, água e solo.
 2.3. Processos de Bioacumulação ambiental: Bioconcentração e Magnificação Trófica.
 2.4. Efeitos dos contaminantes ambientais sobre os seres vivos: efeitos crônicos e agudos, letais e subletais.
 2.5. Alterações causadas pelos poluentes a nível de população, comunidade e ecossistema.

3. Biomonitoramento da Qualidade Ambiental
 3.2. Organismos indicadores: principais tipos, critérios usados na seleção de indicadores.
 3.3. Índices de segurança ecotoxicológica: LC50, EC50, LOEC, NOEC, MATC.
 3.4. Procedimentos para realização de bioensaios de toxicidade com organismos terrestres e aquáticos: principais normas técnicas em vigência.
 3.5. Padrões de qualidade utilizados no biomonitoramento ambiental.

4. Populações Humanas Expostas a Contaminantes Ambientais
 4.1. Intoxicação humana: vias de entrada dos contaminantes, mecanismo de ação dos poluentes, ocorrência carcinogênicos/teratogênicos.
4.2. Estudos de caso: exposição de populações a agrotóxicos, metais pesados, entre outros.
4.3. O risco ecotoxicológico à saúde de populações expostas a poluentes.
4.4. Legislação voltada ao controle e prevenção de poluentes em ambientes humanos.

Procedimentos Metodológicos

- Aulas expositivas/dialogadas;
- Estudos dirigidos.
- Apresentação de Seminários.
- Coletas de amostras em campo.
- Aulas práticas em laboratório.

Recursos Didáticos

Projetor multimídia, quadro branco, filmes, artigos científicos.

Avaliação

- Provas escritas
- Visitas técnicas
- Atividades em laboratório

Bibliografia Básica

4. BAIRD, COLIN; CANN, MICHAEL. *Química Ambiental*. 4ª edição, Bookman, 2008

Bibliografia Complementar

Software(s) de apoio
Curso: Engenharia Sanitária e Ambiental
Código: ESA.0049

Disciplina: Tópicos Especiais em Engenharia Sanitária e Ambiental
Carga-Horária: 30h (40h/a)

Pré-Requisito(s): -
Número de créditos: 2

EMENTA
Temas atuais da Engenharia Sanitária e Ambiental. Novos conceitos, métodos, temáticas e práticas em Engenharia Sanitária e Ambiental

PROGRAMA
Objetivos

Proporcionar oportunidade de aprofundamento de estudos ligados a temas atuais que correspondam a disciplinas obrigatórias, às linhas de pesquisa e aos projetos de pesquisa do corpo docente do curso, ampliando o diálogo interdisciplinar por intermédio da abordagem de temas contemporâneos.

Bases Científico-Tecnológicas (Conteúdos)
Conteúdos curriculares flexíveis de acordo com a temática abordada no semestre. Visão interdisciplinar sobre a aplicação das ciências exatas e a influência do tópico sobre a escolha da profissão de engenharia, desenvolvimento de aplicações a partir de conceitos fundamentais, temas transversais ao curso necessários como formação complementar. Metodologias em engenharia. Conceitos de projeto de engenharia

Procedimentos Metodológicos
- Aulas expositivas/dialogadas;
- Estudos dirigidos;
- Apresentação de seminários;
- Coletas de amostras em campo;
- Aulas práticas em laboratório;
- Visitas técnicas

Recursos Didáticos
Projetor multimídia, quadro branco, filmes, artigos científicos.

Avaliação
- Provas escritas
- Atividades em laboratório
- Apresentação de trabalhos e relatórios

Bibliografia Básica
Considerando-se a natureza da disciplina, a bibliografia específica é apresentada pelo docente responsável em cada semestre letivo.

Bibliografia Complementar
Considerando-se a natureza da disciplina, a bibliografia específica é apresentada pelo docente responsável em cada semestre letivo.

Software(s) de apoio
<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>ESA. 0050</td>
</tr>
<tr>
<td>Disciplina:</td>
<td>Instalações Hidrossanitárias</td>
</tr>
<tr>
<td>Carga-Horária:</td>
<td>60h (80h/a)</td>
</tr>
<tr>
<td>Pré-Requisito (s):</td>
<td>Hidráulica e Hidrotécnica</td>
</tr>
<tr>
<td>Número de créditos:</td>
<td>4</td>
</tr>
</tbody>
</table>

EMENTA
Instalações prediais de água fria (normas técnicas, tipo de sistemas, partes constituintes e materiais, vazões de projeto, ramal predial e caislete, reservatórios, estação elevatória e dimensionamento de barrilete, colunas, ramais e sub-ramais). Tópicos especiais em instalações prediais de água quente (normas técnicas, sistemas de distribuição, materiais empregados e isolamento térmico). Instalações prediais de esgoto sanitário (normas técnicas, partes constituintes, materiais empregados, dimensionamento, caixas de gordura, fossas sépticas e disposição de efluentes). Instalações prediais de águas pluviais (normas técnicas, conceitos básicos de hidrologia, partes constituintes e dimensionamento). Tópicos especiais em instalações prediais de combate à incêndio (legislação, extintores, cálculo do volume de reserva de incêndio, dimensionamento da rede de hidrantes e sprinklers). Instalações prediais de gás (normas técnicas, tipos de distribuição, materiais e dimensionamento).

PROGRAMA

Objetivos
- Identificar os componentes e os princípios de funcionamento dos sistemas prediais hidrossanitários;
- Conhecer o processo de concepção de sistemas prediais hidrossanitários;
- Dimensionar sistemas prediais hidrossanitários, seguindo as orientações das normas técnicas pertinentes;
- Conhecer a terminologia e conceitos fundamentais pertinentes;
- Compreender a importância e funcionamento das instalações.

Bases Científico-Tecnológicas (Conteúdos)

1. **Instalações Prediais de Água Fria**:
 - Terminologia;
 - Estudo da concepção do sistema;
 - Estudo das vazões e dimensionamento das instalações;
 - Materiais utilizados e detalhes construtivos.

2. **Instalações Prediais de Água Quente**:
 - Sistemas de aquecimento, produção e distribuição de água quente;
 - Estudo das vazões e dimensionamento das instalações;
 - Materiais utilizados e detalhes construtivos.

3. **Instalações Prediais de Esgotos Sanitários**:
 - Terminologia;
 - Estudo da concepção do sistema;
 - Estudo das contribuições e dimensionamento das instalações;
 - Estudo das soluções para o destino dos efluentes finais;
 - Materiais utilizados e detalhes construtivos.

4. **Instalações Prediais de Águas Pluviais**
 - Terminologia;
 - Considerações específicas - fatores meteorológicos e áreas de contribuição;
 - Estudo da concepção do sistema;
 - Estudo das contribuições e dimensionamento das instalações;
 - Materiais utilizados e detalhes construtivos.
5. Instalações Prediais Contra Incêndio e pânico:
 • Terminologia;
 • Classificação dos edifícios quanto à legislação;
 • Estudo das vazões e dimensionamento das instalações de hidrantes;
 • Estudo das vazões e dimensionamento das instalações de sprinklers;
 • Tipos de extintores e dimensionamento;
 • Materiais utilizados e detalhes construtivos.

6. Instalações Prediais de Gás:
 • Terminologia;
 • Estudo da concepção do sistema;
 • Dimensionamento das instalações;
 • Materiais utilizados e detalhes construtivos.

Procedimentos Metodológicos

- Aulas expositivas;
- Aulas práticas;
- Visitas técnicas.

Recursos Didáticos

- Quadro branco/pincel, Projeto multimídia, som e acesso a internet.

Avaliação

- Trabalhos de pesquisa;
- Relatório de visitas técnicas;
- Avaliação bimestral;
- Práticas laboratoriais.

Bibliografia Básica

Bibliografia Complementar

2. NORMAS TÉCNICAS DA ABNT E CATÁLOGOS DE FABRICANTES.
Curso: Engenharia Sanitária e Ambiental
Código: ESA. 0051
Disciplina: Reúso de Efluentes
Carga-Horária: 30h (40h/a)
Pré-Requisito(s): Tratamento de Águas Residuárias
Número de créditos: 2

EMENTA
Proporcionar as bases científicas e tecnológicas pertinentes aos rudimentos para compreender a importância e os tipos de reuso de água. Saber dos riscos à saúde humana e ao meio ambiente, decorrentes do reuso de água, além de interpretar as características físicas, químicas e microbiológicas de águas residuárias tratadas, objetivando a implantação de um sistema de reuso com base na legislação pertinente ao reúso de efluentes.

PROGRAMA
Objetivos
• Buscar desenvolver habilidades e competências para caracterizar físico-química e microbiologicamente águas residuárias tratadas. Identificar e aplicar a tecnologia de reuso adequada para estudar de casos.

Bases Científico-Tecnológicas (onzeúdos)
1.0 Importância do reuso de água
2.0 Conceito de Reúso
3.0 Importância do reuso
4.0 Tipos e classificação de Reúso
5.0 Critérios e Padrões de Qualidade de Água para Reúso
6.0 Avaliação dos Riscos do Reúso de Águas Residuárias Tratadas
7.0 Legislação Pertinente ao reuso de Águas residuárias

Procedimentos Metodológicos
• Aulas expositivas;
• Aulas práticas;
• Visitas técnicas.

Recursos Didáticos
• Quadro branco/pincel, Projeto multimídia, som e acesso a internet.

Avaliação
• Trabalhos de pesquisa;
• Relatório de visitas técnicas;
• Avaliação bimestral;
• Práticas laboratoriais.

Bibliografia Básica

Bibliografia Complementar
ANEXO IV - SEMINÁRIOS CURRICULARES

<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>ESA.0053</td>
</tr>
<tr>
<td>Disciplina:</td>
<td>Seminário de Orientação ao Estágio supervisionado</td>
</tr>
<tr>
<td>Carga-Horária:</td>
<td>60h (80h/a)</td>
</tr>
<tr>
<td>Pré-Requisito(s):</td>
<td>-</td>
</tr>
<tr>
<td>Número de créditos:</td>
<td>4</td>
</tr>
</tbody>
</table>

PROGRAMA

Objetivos
- Orientar o estudante acerca dos aspectos legais, técnicos e práticos da inserção no mundo do trabalho através de estágio curricular.
- Consolidar os conteúdos vistos ao longo do curso em práticas de natureza tecnológica e profissional, possibilitando ao estudante a integração entre teoria e prática.
- Verificar a capacidade de síntese do aprendizado adquirido durante o curso.

Bases Científico-Tecnológicas (Conteúdos)
- Orientações ao estágio e à temáticas do mundo do trabalho. Reuniões periódicas do estudante com o seu orientador para apresentação e avaliação das atividades desenvolvidas durante o estágio.

Procedimentos Metodológicos
- Aulas expositivas e dialogadas;
- Estudos de casos.

Recursos Didáticos
- Quadro branco, pincel e projetor de multimídia

Avaliação
- Relatórios Parciais.
- Relatório final (estágio).
- Será contínua, considerando os critérios de participação ativa dos discentes em sua atuação profissional por meio de relatórios dirigidos a este fim e visitas técnicas à empresa contratante.
<table>
<thead>
<tr>
<th>Curso:</th>
<th>Engenharia Sanitária e Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>ESA.0052</td>
</tr>
<tr>
<td>Disciplina:</td>
<td>Seminário Integração Acadêmica</td>
</tr>
<tr>
<td>Carga-Horária:</td>
<td>60h (80h/a)</td>
</tr>
<tr>
<td>Pré-Requisito(s):</td>
<td>-</td>
</tr>
<tr>
<td>Número de créditos:</td>
<td>4</td>
</tr>
</tbody>
</table>

PROGRAMA

Objetivos
- Possibilitar um momento de acolhimento, orientação, diálogo e reflexão;
- Conhecer a estrutura de funcionamento do IFRN, especificamente, do Câmpus, da Diretoria Acadêmica e do Curso;
- Situar-se na cultura educativa do IFRN;
 - Conhecer as formas de acesso aos serviços de apoio ao estudante, se apropriando de seus direitos e deveres.

Bases Científico-Tecnológicas (Conteúdos)
- Acolhimento e integração dos estudantes através de reunião realizada no início do semestre letivo.
- Apresentação da estrutura de funcionamento do IFRN e das atividades da Diretoria Acadêmica e do Curso.

Procedimentos Metodológicos
- Aulas expositivas e dialogadas;
- Estudos de casos.

Recursos Didáticos
- Quadro branco, pincel e projetor de multimídia

Avaliação
A avaliação será realizada mediante a participação e registro da frequência do estudante.
<table>
<thead>
<tr>
<th>Descrição/Título</th>
<th>Qtde.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCHA, Julio César; ROSA, André Henrique; CARDOSO, Arnaldo Alves. Introdução à química</td>
<td>31</td>
</tr>
<tr>
<td>Descrição/Título</td>
<td>Qtde.</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Descrição/Título</td>
<td>Qtde.</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Descrição/Título</td>
<td>Qtde.</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>PHILIPPI JR., Arlindo; PELICIONI, Maria Cecília Focesi.Educação ambiental e</td>
<td></td>
</tr>
<tr>
<td>PHILIPPI JÚNIOR, Arlindo; PELICIONI, Maria Cecília Focesi.Educação ambiental:</td>
<td></td>
</tr>
<tr>
<td>PRESS, Frank; MENEGAT, Rualdo. Para entender a terra. 4. ed. Porto Alegre:</td>
<td>13</td>
</tr>
<tr>
<td>PRESS, Frank.Earth issues reader: for understanding earth and environmental</td>
<td></td>
</tr>
<tr>
<td>MARTINELLI, Marcello.Cartografia temática: caderno de mapas. São Paulo:</td>
<td></td>
</tr>
<tr>
<td>ZUQUETTE, Lázaro V.; GANDOLFI, Nilson.Cartografia geotécnica. São Paulo:</td>
<td></td>
</tr>
<tr>
<td>MARTINELLI, Marcello.Mapas da geografia e cartografia temática. 2. ed. São</td>
<td></td>
</tr>
<tr>
<td>ISBN 85-308-0115-8.</td>
<td>5</td>
</tr>
<tr>
<td>TRABULSI, Luiz Rachid; ALTERTHUM, Flavio.Microbiologia. 3. ed. São Paulo:</td>
<td>08</td>
</tr>
<tr>
<td>PELCZAR JR, Michael Joseph; YAMADA, Sueli Fumie.Microbiologia: conceitos e</td>
<td></td>
</tr>
<tr>
<td>HARVEY, Richard A.; CHAMPE, Pamela C.; FISHER, Bruce D. Microbiologia ilustrada.</td>
<td>05</td>
</tr>
<tr>
<td>SILVA, Jorge Xavier da; ZAIDAN, Ricardo Tavares.Geoprocessamento & análise</td>
<td>05</td>
</tr>
<tr>
<td>SILVA, Jorge Xavier da; ZAIDAN, Ricardo Tavares.Geoprocessamento & análise</td>
<td>05</td>
</tr>
<tr>
<td>85-286-1076-4.</td>
<td></td>
</tr>
<tr>
<td>MARTINELLI, Marcello.Mapas da geografia e cartografia temática. 2. ed. São</td>
<td></td>
</tr>
<tr>
<td>BLASCHKE, Thomas; KUX, Hermann.Sensoriamento remoto e SIG avançados: novos</td>
<td></td>
</tr>
<tr>
<td>sistemas sensores: métodos inovadores. 2. ed. São Paulo: Oficina de Textos,</td>
<td>02</td>
</tr>
<tr>
<td>MORAES, Luís Carlos Silva de. Curso de direito ambiental. 2. ed. São Paulo:</td>
<td>05</td>
</tr>
<tr>
<td>FIORILLO, Celso Antonio Pacheco.Curso de direito ambiental brasileiro. 6. ed.</td>
<td>05</td>
</tr>
<tr>
<td>FREITAS, Vladimir Passos de.; FREITAS, Gilberto Passos de. Crimes contra a</td>
<td></td>
</tr>
<tr>
<td>MACHADO, Paulo Affonso Leme; MACHADO, Paulo Affonso Leme.Direito ambiental</td>
<td>05</td>
</tr>
<tr>
<td>Descrição/Título</td>
<td>Qtde.</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>DIAS, Marilza do Carmo Oliveira; BANCO DO NORDESTE. Manual de impactos ambientais: orientações básicas sobre aspectos ambientais de atividades produtivas. Fortaleza: Banco do Nordeste, 1999. 297 p. il.</td>
<td>02</td>
</tr>
<tr>
<td>Descrição/Título</td>
<td>Qtde.</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Descrição/Título</td>
<td>Qtde.</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>ALBUQUERQUE, Inara Cristine Silva de. Sistema de gestão ambiental: conceitos e</td>
<td></td>
</tr>
<tr>
<td>BARBIERI, José Carlos. Desenvolvimento e meio ambiente: estratégias de mudanças</td>
<td></td>
</tr>
<tr>
<td>BARBIERI, José Carlos. Desenvolvimento e meio ambiente: estratégias de mudanças</td>
<td></td>
</tr>
<tr>
<td>CÂNDIDO, Gesinaldo Ataíde. Desenvolvimento sustentável e sistemas de indicadores de</td>
<td></td>
</tr>
<tr>
<td>MAGALHÃES JÚNIOR, Antônio Pereira. Indicadores ambientais e recursos hídricos:</td>
<td></td>
</tr>
<tr>
<td>BUARQUE, Sérgio C. Construindo o desenvolvimento local sustentável: metodologia de</td>
<td></td>
</tr>
<tr>
<td>Descrição/Título</td>
<td>Qtde.</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>Descrição/Título</td>
<td>Qtde.</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>GONDIM, José Cleantho C. Valores de oxidação aplicados a esgotos domésticos. São Paulo: CETESB, 1976. 137 p. il.</td>
<td>03</td>
</tr>
<tr>
<td>LIMA, José Dantas de. Gestão de resíduos sólidos urbanos no Brasil. Campina Grande: UFPB, [2000 ?]. 267 p. il.</td>
<td>09</td>
</tr>
<tr>
<td>REIS, Lineu Belico dos; SILVEIRA, Semida. Energia elétrica para o desenvolvimento</td>
<td>21</td>
</tr>
<tr>
<td>Descrição/Título</td>
<td>Qtde.</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>EMERENCIANO, Sebastião Virginio. Auditoria ambiental aplicada ao sistema gestão ambiental (SGA) em uma empresa de extração mineral. [S.l.]: [s.n.], 2009. 106 p. il.</td>
<td>01</td>
</tr>
</tbody>
</table>